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ABSTRACT

Speech is a simple and natural form of communication among humans. With the prolif-
eration of devices and the widespread availability of the internet, it is essential to have
machines that can interact with humans without any language barriers. However, devices
and applications that can recognise, transcribe and respond to Malayalam speech is still
far from a reality.

Successful development of natural language processing (NLP) solutions including auto-
matic speech recognition (ASR) for morphologically complex low resource languages like
Malayalam, requires many fundamental computational linguistic tools and techniques, in
addition to vast amount of speech and text corpora. There is currently a severe lack of
openly licensed speech corpora in Malayalam, with less than hundred hours of available
data to train an ASR system. This is significantly less than the amount of data available
for high resource languages with established ASR systems. However the large amount
of web scraped Malayalam text corpora is easily available. This fact has motivated this
research to stick on to the the classical speech recognition architecture of using separately
trained acoustic and language models, rather that using modern End to End approaches
that has orders of magnitude higher transcribed speech corpora requirement.

This research work addresses different linguistic domain challenges associated with con-
verting Malayalam speech to textual form. Specifically, this research work explores the
morphological complexity of Malayalam language using corpus linguistic parameters like
type token ratio and moving average type token ratio, and concludes that Malayalam is
more complex than other Indian and European languages analysed in the study. Based on
this analysis, two potential directions for research in Malayalam automatic speech recog-
nition (ASR) have been identified. The first involves developing a tool to create large vo-
cabulary pronunciation lexicons, while the second involves implementing subword based
ASR techniques. Both approaches have the potential to address the challenges posed by
the complex morphology of Malayalam.

The classical architecture of ASR system rely on knowledge source like a pronunciation
lexicon. A static pronunciation lexicon used to build an ASR decoder may not be suf-
ficient to handle words the system may encounter in future. It will also be required to
update the pronunciation lexicon, with new words from time to time. The morphologi-
cal complexity of Malayalam leading to ever expanding word vocabulary pointed to the
need for generating pronunciations of words automatically. The research in this direction,
led to the development of a finite state transducer based software tool, Mlphon. Mlphon
performs script grammar check, orthographic syllabification, phonetic feature analysis,
grapheme to phoneme and phoneme to grapheme conversions. Mlphon is published as an
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open source python library under MIT License. Using Mlphon, the largest open licensed
pronunciation lexicon for Malayalam which contains 100,000 common words of different
word categories is published.

Employing a large vocabulary pronunciation lexicon created using Mlphon, an ASR for
Malayalam is developed. The acoustic modelling for this ASR is based on hybrid deep
neural network and hidden Markov model (DNN-HMM) technique. The speech recogni-
tion system thus developed is evaluated on diverse test sets with low and medium out of
vocabulary (OOV) words. The resulting ASR model is published under open license for
enabling integration to various tasks.

To address the issue of OOV words in Malayalam ASR, this research work proposes the
development of an open vocabulary speech recognition system using subword lexicons.
The current research presents two linguistically motivated subword segmentation strate-
gies, which are compared with the data driven strategies. The subword based approach has
significantly reduced the ASR model size and improved the word error rate by recognis-
ing many out of vocabulary words that a word based ASR would typically miss. Overall,
the proposed open vocabulary speech recognition system that utilises subword lexicons
presents a promising solution to the problem of OOV words in Malayalam ASR, resulting
in improved model performance and recognition of a wider range of words.
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Chapter 1

Introduction
Speech is a natural form of communication among humans. Speech based human com-
puter interaction (HCI) is often preferred in personal digital assistants and home automa-
tion tools. ASR is the process of converting spoken utterances into textual form as a
sequence of words. ASR systems have applications in generating captions for videos,
online meetings, transcribing lectures, speech based text input systems, interactive voice
response systems etc.

Speech recognition is a challenging problem that demands for addressing both the acous-
tic and linguistic aspects of spoken language. This includes understanding the physical
properties of speech signals, as well as the linguistic structure and meaning of the words
and phrases being spoken. However the solutions to linguistic challenges that are effec-
tive for one language cannot be easily transferred to other languages. This is because
natural human languages are so diverse in terms of their typology, phonetic inventory,
word vocabulary and in digital resources. This thesis aims to address specific linguistic
domain challenges in the development of large vocabulary continuous speech recognition
(LVCSR) for Malayalam language. This research work presents a comprehensive analy-
sis of the challenges, in terms of morphology and phonology, faced in building an ASR
system for Malayalam and proposes various tools and techniques to overcome them. Fur-
thermore, these proposed solutions have applications beyond ASR and can address some
of the generic problems in Malayalam natural language processing (NLP).

1.1 Background

Digital devices and hardware are getting cheaper and easily available. Utilisation of these
devices to its full potential is possible only if every user is able to communicate with
these devices without barriers. A functional ASR in one’s native language is essential
for speech based typing, accessing speech enabled digital assistants and using interactive
voice response systems. This can be extended to applications like transcribing speech for
the hearing challenged and futuristic applications like speech to speech translation.

The experiments used in this research work utilises the classical architecture of speech
recognition described in Fig. 1.1. Over the last three decades, the field of ASR has under-
gone significant advancements, with researchers focusing on optimising each component



of the ASR architecture. Toolkits such as HTK [1], CMU Sphinx [2], and Kaldi [3] have
been developed based on this architecture, enabling researchers to integrate their work on
improving individual components and evaluate their impact on the overall performance of
the ASR system.

Figure 1.1: Architecture of an ASR system

In the context of this research on themorphologically complexMalayalam language, a sig-
nificant challenge was encountered, stemming from the limited availability of annotated
speech corpora under open licenses, thus positioning it as a low-resource language. Clas-
sical or pipeline architecture is best suited than the alternate End to End (E2E) architecture,
in scenarios where text data outweighs audio data, a characteristic of the Malayalam lan-
guage [4]. The research outcomes presented in [5] and [6] indicate that attempting to train
an E2E ASR system from scratch, using a dataset comprising of less than 100 hours of
annotated speech data, would lead to unsatisfactory accuracy. Additionally, the classical
ASRmodels offer the advantage of easy integration into small hardware devices, enabling
fast on-device speech recognition [4]. Thus, the research makes the deliberate choice to
employ classical architecture over the E2E approach, driven by the unique challenges and
characteristics associated with the Malayalam language.

In the pipeline ASR system, the acoustic model (AM) is the learnt representation of rela-
tionship between the acoustic features of speech and the phonemes of the language. The
AM uses the Gaussian mixture model (GMM) to model the acoustic features of speech
and the hidden Markov model (HMM) to model the temporal structure of speech. The
GMM-HMMAM is trained on annotated speech data, and its parameters are learned from
the data using statistical techniques. The deep neural network (DNN) based AM is an
up-gradation over the conventional GMM-HMM approach of acoustic modelling and is
generally called DNN-HMMapproach. The languagemodel (LM) is amodel of the proba-
bility distribution of words or subwords in the language. The LM is typically implemented
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as a statistical n-gram, which predicts the likelihood of a sequence of words or subwords
given the previous words in the sentence. The pronunciation lexicon (PL) is a list of words
or subwords in the language, along with the corresponding phoneme level transcriptions.
A detailed description of ASR architectures is provided in Chapter 2.

1.2 Motivation, Challenges and Proposed Solutions

Malayalam is a Dravidian language spoken in the Indian state of Kerala and the union ter-
ritories of Lakshadweep and Puducherry. It is one of the twenty two scheduled languages
of India spoken by nearly 2.88% of Indians, with more than thirty five million speakers
across the globe. Malayalam has the official language status in the state of Kerala and in
the union territories of Lakshadweep and Puducherry (Mahé). Malayalam has been des-
ignated as a classical language in India since 20131 due to its rich literary heritage and
cultural significance.

However, despite a huge number of speakers, based on our investigations and survey of
reported literature, it is understood that Malayalam is a low-resourced language for the
following reasons [7]:

1. Limited availability of linguistic resources, like

(a) Lexical resources. eg: Machine-readable dictionaries.

(b) Linguistic corpora. eg: Transcribed speech corpus [8] and parallel text corpus.

(c) Linguistically annotated corpora. eg: part-of-speech tagged text corpus.

2. Lack of tools for creating linguistic resources manually or semi-automatically 2.

3. Lack of benchmark datasets for comparison of results.

The field of speech recognition for the Malayalam language has not yet reached maturity
and is not ready for real-world applications due to a variety of reasons, including a shortage
of annotated speech data and a lack of computational linguistic resources that can address
the unique morphological and phonological features of the Malayalam language.

Themorphological complexity in theword formation rules inMalayalam practicallymakes
its vocabulary unlimited [9]. Each root word can give rise to hundreds of derived words
by agglutination, inflection and compounding [10]. Additionally, loan words from other
languages and proper nouns get added to the vocabulary very fast in modern days. The
grapheme to phoneme correspondence in Malayalam is not truly one-to-one (See Ap-
pendix I for details). A static PL used to build an ASR decoder may not be sufficient

1https://en.wikipedia.org/wiki/Malayalam
2https://en.wikipedia.org/wiki/Language_resource
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to handle words the system may encounter in the future. It will also be required to update
the PL, with new words from time to time. All of this leads to the necessity for an auto-
mated grapheme to phoneme (G2P) conversion tool and this research work proposes and
implements its development.

The challenges of the morphological complexity of the language can be addressed by open
vocabulary speech recognition. This refers to the use of subword based language models
and lexicons instead of word based ones [11]. This method effectively handles each word
by decomposing it to subwords and then reconstructing them back to words after decoding.
This research work proposes and implements linguistically informed subword modelling
algorithms and compare their effectiveness in Malayalam ASR task.

1.3 Research Objective

The focus of this research is on the the investigation of the linguistic challenges associated
with ASR in Malayalam language and the development of open source computational
linguistic tools and techniques essential to solve them. Specifically the objectives can be
described as:

1. To analyse the morphological complexity of Malayalam and the challenges it im-
poses on building a continuous speech recognition system.

2. To automate the process of creating a large vocabulary pronunciation lexicon taking
care of precise grapheme to phoneme conversion rules of Malayalam.

3. To build a LVCSR model for Malayalam using the pipeline architecture, combining
a large vocabulary pronunciation lexicon, a hybrid DNN-HMM acoustic model and
a statistical language model.

4. To build an open vocabulary ASR system for Malayalam using subword based PL
and LM to reduce the impact of morphological complexity.

1.4 Contributions of this Thesis

Considering the challenges involved in an ASR system for Malayalam, this research has
contributed towards the development of an open and functional ASRmodel forMalayalam
that could be integrated to various tasks. The major contributions are:

1. Quantitative analysis of the morphological complexity of Malayalam language.

2. Documentation of the graphemic and phonemic inventory of Malayalam and the
correspondence between the two.
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3. Development of an algorithmic description of the grapheme-phoneme correspon-
dence in Malayalam and its implementation into a modular toolkit which may find
applications in script grammar check, orthographic syllabification, phonetic feature
analysis, grapheme to phoneme and phoneme to grapheme conversions.

4. Publication of large vocabulary pronunciation lexicon of more than hundred thou-
sand words belonging to different word categories.

5. Development of a LVCSRmodel forMalayalam and publication of an open licensed
Malayalam ASR model that could be integrated to various applications.

6. Exploration of subword segmentation strategies suited for Malayalam considering
its morphological complexity.

7. Development of subword based open vocabulary ASR model to reduce word error
rate (WER) and model memory requirement.

Furthermore, open dissemination of the source codes and the developed models is very
much essential to ensure reproducibility, reusability, and most importantly for validation
and further improvements, leading to research continuity. This aspect has been given
utmost priority at every stage of this research work.

1.5 Organisation of the Thesis

The chapter 1 of this thesis highlights the motivation, specific challenges, research objec-
tives and the contributions of this work. Chapter 2 reviews the related works on general
ASR system architectures, G2P conversion systems, morphology aware ASR systems,
Malayalam speech corpora and Malayalam ASR systems.

Chapter 3 describes the quantitative analysis on the morphological complexity of Malay-
alam language. This analysis suggested two potential directions for research. The first
involves developing a tool to create large vocabulary pronunciation lexicons, while the
second involves implementing subword based ASR techniques.

Chapter 4 explains the design and development of bidirectional G2P toolkit Mlphon. The
chapter also presents the evaluation of the toolkit intrinsically on a gold standard lexi-
con and the NLP applications of this toolkit. Chapter 5 presents the development of an
LVCSR system for Malayalam with a large vocabulary pronunciation lexicon created us-
ing Mlphon, acoustic and language models trained using various openly licensed speech
and text datasets. It also presents a comparison of the ASR results with other lexicon
creation tools.

Chapter 6 explores different subword segmentation strategies for ASR in Malayalam lan-
guage. Chapter 7 concludes the thesis highlighting the contributions, limitations and list-
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ing the scope for future research work.

A detailed documentation of the graphemic and phonemic inventory of Malayalam is pro-
vided in Appendix I. It is followed by the list of references and the list of publications
based on the findings in this thesis.
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Chapter 2

Review of Related Works

2.1 Introduction

This chapter describes various aspects in the development of an ASR system for Malay-
alam language. It starts with a comprehensive review of different speech recognition ar-
chitectures in Section 2.2, which helps to make an informed choice of the right architecture
for building the Malayalam ASR system.

One of the critical components of building an ASR system is the G2P conversion system.
In Section 2.3, we discuss the need for G2P conversion systems and the various approaches
we can take to build them. G2P conversion systems are crucial in transforming the words
into sequence of fundamental speech units (phonemes), which is essential in developing
an ASR system. Additionally, we also explore the creation of ready to use pronunciation
lexicon (PL) for different languages in Section 2.3.2. A PL is a dictionary that contains a
mapping of words to their corresponding phonemes. These pre-built lexicons can aid in
building an ASR system more efficiently and accurately. We then move on to discuss how
the morphological complexity of languages is quantitatively analysed in Section 2.4. As
we explore the Malayalam language, we find that it has a high degree of morphological
complexity, which presents some unique challenges for developing an ASR system. We
explain how we can overcome these challenges and the approaches we can take to tackle
them.

As we move on to discuss the development of ASR systems in languages with high mor-
phological complexity in Section 2.5, we explore some of the challenges faced in develop-
ing these systems. We look at some of the approaches and techniques that researchers have
used to address these challenges and to build effective ASR systems for such languages.
Then in section 2.6, we document various openly available speech and text corpora avail-
able in Malayalam for developing speech and language technology applications. Finally,
we review previous reported works on the development of ASR systems for the Malay-
alam language in Section 2.7. We examine the different approaches taken by researchers
and the outcomes of their efforts in building ASR systems for Malayalam. This review
will help to understand the progress made in this field and the areas that require further
attention in developing an effective ASR system for Malayalam.
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2.2 ASR System Architectures

The development of ASR architectures has undergone significant changes since its in-
ception in the mid-twentieth century. One of the early attempt of ASR was the basic
word template matching method, which was used for isolated digit recognition in English
in 1952 [12]. The Harpy system [13] introduced in 1972, used phoneme level template
matching and graph based search for recognising spoken sentences with a limited vocab-
ulary. However, a major breakthrough in ASR research occurred in the 1990s with the
release of open source HMM toolkits such as HTK [1] CMU Sphinx [2] and Kaldi [3].

These toolkits effectively combined the concepts of HMM, GMM, and statistical language
models, which had been introduced in the 1970s and 1980s [14]. This led to the devel-
opment of more accurate and robust ASR systems capable of recognising larger vocabu-
laries and handling variations in speech due to factors such as accent and speaking rate.
Recent advancements in deep learning techniques such as Transformer models have fur-
ther improved the performance of ASR systems, leading to their widespread use in various
applications such as virtual assistants, transcription services, and language translation.

In the following sections we describe in detail the pipeline architecture of ASR and an
overview of E2E ASR architecture.

2.2.1 Pipeline Architecture

Figure 2.1: Architecture of a pipeline ASR decoder

We present the most widely used ASR architecture here. A pipeline ASR is built on differ-
ent components, each one developed independently during the training stage. The com-
ponents are: an AM typically implemented using a statistical approach or using a neural
network, a static PL, and a LM usually represented as a probabilistic component. The
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decoding process is carried out using a weighted finite state transducer (WFST) which is
created by combining these elements through composition operations [15]. This pipeline
structure shown in Fig. 2.1 [4] is now considered the classical architecture with the advent
of modern E2E ASR architectures. In this figure, Pr(.) indicates the probability function,
X indicates the speech feature vector, P indicates the phonemes,W indicates the words in
a sentence and Ŵ indicates the words predicted by the ASR decoder. The steps in pipeline
architecture of ASR are described in the following subsections.

Feature Extraction

The waveform of raw speech signal in a speech corpus is simply a representation of air
pressure variation over time. In order to extract information that is relevant for acous-
tic modelling, the raw speech signal is transformed into alternate representations. This
process involves splitting the audio into frames of fixed size using overlapping windows.
The window shapes, like Hamming or Hanning, are designed to smoothen frame border
discontinuities in order to avoid the occurrence of frequency artifacts [16]. Typically the
window size is 25ms with 10ms overlap with previous frame. The series of frequency
domain transformations on each frame returns a low dimensional feature vector [14].

Figure 2.2: Extracting Speech Features

Mel frequency cepstral coefficient (MFCC) is one of the most popular acoustic feature
used in speech recognition systems. The extraction of this feature is described in Fig. 2.2
[4]. Alternately, there are features like log filter-bank energy (LFBE), or perceptual linear
prediction (PLP) cepstral coefficients that provide good acoustic representations of speech
units (or phones) while suppressing variations in the signal due to factors such as the
speaker, channel, speaking style, and recording environment [17]. In all our experiments,
we have used MFCC features unless stated otherwise. In addition to the MFCCs, first-
order (delta) and second-order (delta–delta) regression coefficients are often appended
in a heuristic attempt to compensate for the conditional independence assumption made
by the HMM-based acoustic models [18]. For DNN based acoustic modelling we have
additionally used i-vectors as feature vectors [19].
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Acoustic Model (GMM-HMM)

A phoneme is the fundamental unit of speech in a language. To create an AM, each
phoneme in a language is given an identifiable label. The AM represents the relation
between the phoneme labels and the acoustic features [17]. The acoustic manifestation of
a phoneme is dependent on the speaker, rate of speech delivery, environmental factors and
additionally on the phoneme context in which it occurs. To model the temporal variations
of a phoneme we use HMMwith multiple states. It allows for fine grained modelling of a
single phoneme into its component parts.

When a single independent phoneme is modelled using an HMM, we call that the mono-
phone acoustic modelling scheme. However the acoustic realisation of the phoneme de-
pends largely on the context of its occurrence. A vowel occurring in between two plosives
behave differently to that of a vowel that occurs at the beginning of an utterance. When
a phoneme in different contexts is modelled using different HMMs the modelling effec-
tiveness would be better. This type of an acoustic model which takes into account the
left and right context of a phoneme is called the triphone acoustic model. In triphone
acoustic model, the speech units are labelled as triphones. The HMM states of triphones
having similar acoustic identities are given same labels and are called tied states. The
similar sounding triphone states that are tied together are determined by phonetic decision
trees [20].

Figure 2.3: GMM-HMM model of a phoneme, P

In general an HMM is defined by:

1. a set of states, Q = {Q0, Q1, ...QN}

2. a set of transitions between states

3. transition probability, aij: the probability of traversing from state Qi to Qj
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4. a set of possible observations which are acoustic (speech) feature vectors, Xk

5. observation probability, bi(Xk): probability of state Qi generating possible obser-
vation Xk.

While modelling a phoneme using HMM, the acoustic features, Xk are the observations.
The set of hidden states are referred to as senones. Each phoneme is composed of mul-
tiple senone states indicated by Qi. Each state in an HMM is defined by an observation
probability density function specified by multivariate Gaussians or GMMs indicated by
N (µ, σ2), where µ and σ2 indicate the mean and variance of the observations [15]. These
Gaussians represent the probability of audio feature vectors, Xk given the phoneme state
label Qi, ie., Pr(Xk|Qi). The transition between states are strictly left to right with the
addition of self loops. This ensures a phoneme can always be represented by the same
GMM-HMM model, whether it is uttered fast or slow. A slowly uttered phoneme will
pass through more self loops. This structure of GMM-HMM phoneme model is described
in Fig. 2.3 [14,18]. The purpose of GMM-HMM acoustic model training is to estimate the
parameters of this model, corresponding to every phoneme. These parameters are learnt
from a huge collection of speech, spoken by multiple speakers.

Acoustic Model (DNN-HMM)

Instead of using GMMs to model the observation probability density function of the HMM
states, DNNs [21] can as well be used. This configuration as shown in Fig. 2.4 is referred
to as the hybrid DNN-HMM acoustic model [14, 22]. The DNNs have the audio frame
features at the input and HMM state labels at the output. The DNN model training proce-
dure relies on the GMM-HMM training to produce labelled data. The advantage of using
DNNs instead of GMMs is that they are better equipped to learn complex non-linear func-
tions [17].

Even though the labels come directly from the GMM model, for the DNN, each training
data instance (audio feature vector) will contain additional contextual information about
the left and right frames [14,22]. Unlike GMM-HMMmodels which predict the likelihood
of audio feature vector given a context dependent phoneme state, hybrid DNN-HMM
models predict the posterior probability of a context dependent tied phoneme state given
an audio, Pr(Q|X). However both defines a relation between audio and phonemes.

The GMM-HMM training is called generative training while the DNN-HMM is called
discriminative training. In discriminative training, models are trained to to maximise the
separation between the correct and incorrect labels, or to discriminate between correct and
incorrect labels rather than simply assign high weights to the correct sequence of labels1.
The discriminative training objective is usually based on reducing the frame level cross-

1https://m-wiesner.github.io/LF-MMI/
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Figure 2.4: DNN-HMM model of a phoneme, P

entropy loss as in equation 2.2.1, where Q and Q̂ represents the true and predicted HMM
state labels.

LCE(Q, Q̂) =
∑
i=1

Qi log( 1
Q̂i

) (2.2.1)

An improvement over the basic feed forward DNN to use more temporal context would
be to use time delay neural network (TDNN) as demonstrated in Fig. 2.5 [23]. Each layer
in TDNN acts at different temporal resolution, where higher layer are designed to have
a wider receptive field. Since there would be overlap between input contexts at adjacent
time steps, the connections in the network are sub-sampled as shown by solid lines in Fig.
2.5. It reduces redundancy and improves computational efficiency during training.

A factored form of TDNNs (TDNN-F) which is structurally the same as a TDNN whose
layers have been compressed via singular value decomposition, but is trained from a ran-
dom start with one of the two factors of each matrix constrained to be semi-orthogonal
has proven to give substantial improvements over TDNNs [24].

Hybrid DNN-HMM architectures using frame level cross entropy loss as a discriminative
training criteria can be aided by maximum mutual information (MMI) objective. The
MMI training objective tries to predict the correct sequence of words corresponding to
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Figure 2.5: TDNN based acoustic modelling with sub-sampling (red) and without sub-
sampling (blue+red).

an utterance as a whole [25]. The lattice free maximum mutual information (LF-MMI)
algorithm proposed in [26], has enabled the usage of GPUs to implement the MMI criteria
and has reported improved ASR results. The Kaldi implementation of TDNN-F has been
the choice of DNN-HMMacoustic model in the current research, due to its proven acoustic
modelling efficiency in the context of limited training data.

Pronunciation Lexicon

A pronunciation lexicon (PL) is an important component in speech recognition and syn-
thesis systems. It serves as a mapping between written words and their corresponding
pronunciations, usually represented as a sequence of phonemes. In a classical ASR sys-
tem, the acoustic model undergoes training using annotated speech corpora, where the
annotations consist of word-level transcripts of the spoken utterances. However, to align
the utterances with phoneme-level transcriptions, the training process relies on the PL.
This lexicon additionally holds a crucial role within the ASR decoder, working in tan-
dem with the acoustic model and the language model to ensure precise transcription of the
spoken content [18].
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In the case of Malayalam, a PL is used to map every word or subword to its pronunciation
using a one-to-one mapping, with some exceptions that are handled using a bidirectional
G2P toolkit, Mlphon, developed as part of this research work and explained in Chapter 4.
The G2P toolkit is an automated system that can automatically generate pronunciations.
In some cases, a word may have multiple valid pronunciations, and these alternate pro-
nunciations are also included in the PL. This can happen for a variety of reasons, such as
regional variations in pronunciation or different meanings associated with different pro-
nunciations.

Table 2.1: A phonemic and graphemic pronunciation lexicon

Word Phonemic Lexicon Graphemic Lexicon
ഈ iː ഇ ◌ൗ
ഉന്നത u n n a t ̪ a ഉ ന ◌് ന ത
എന്ന e n̪ n̪ a എ ന ◌് ന
ഒരു o ɾ u ഒ ര ◌ു
കേഫ k a f eː ക ഫ േ◌
േഫാേട്ടാ f oː ʈ ʈ oː ഫ േ◌ാ ട ◌് ട േ◌ാ

Finally, when generating the PL for subwords (i.e., smaller units of language that are not
complete words), sometimes a graphemic PL is used. This means that the pronuncia-
tion is based solely on the spelling of the subword and not on any specific established
pronunciation. This approach can be useful for handling subwords that have ambiguous
pronunciations. Example entries from a phonemic and graphemic PL is shown in Table
2.1. The probability of a phoneme sequence given a word segment can be estimated from
this lexicon and this probability Pr(P |W ) is referred to as the lexical model where P

indicates the phoneme label.

Language Model

A language model (LM), predicts the most probable word (or subword) sequence, given
the list of previously occurred words or subwords. For a sentence W formed by sequence
of N word (or subword) segments W = w1, w2 wi ...wN , the probability Pr(W ) of the
sentence is given by the following formula applying the chain rule of probability.

Pr(W ) = Pr(w1, w2, ...wN) (2.2.2)

= Pr(w1)Pr(w2|w1)...P r(wN |wN−1, wN−2...w1) (2.2.3)

Based on the Markovian assumption of n-gram language modelling, probability of each
segment depends only on the previous n−1 segments. This makes the sentence probability
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to be computed as:

Pr(W ) =
N∏

i=1
Pr(wi|wi−1, wi−2..wi−(n−1)) (2.2.4)

The probability of words (or subwords) following each other can be calculated based on
a large amount of text data. The most common n-gram models are bigram and trigram,
where the history of one or two words or subwords is taken into account, respectively.
Since Pr(W ) encodes information about grammatically valid sequence of segments, it is
also referred to as the grammar model. Back-off probabilities are estimated using Kneser-
Ney algorithm to avoid the zero-probable word sequence problem [27].

Decoding Graph

The function of an ASR decoder is to find the sequence of segments which are usually
words W = w1, ..., wK that is most likely to have generated the observed feature vectors
X = X1, ..., XT .

The decoder tries to find

Ŵ = arg max
W

Pr(W |X) (2.2.5)

By the Bayes’ rule, this equation could be transformed into an equivalent form:

Ŵ = arg max
W

Pr(X|W )Pr(W )
P (X)

(2.2.6)

= arg max
W

Pr(X|W )Pr(W ) (2.2.7)

The feature vector probability Pr(X) is independent of the word probabilities and hence
can be ignored to simplify the equation as in 2.2.7 [18]. The likelihood Pr(X|W ) is
determined by the acoustic and phonetic models and the prior Pr(W ) is determined by
the language model.

The probability Pr(X|W ) can be further decomposed into

Pr(X|W ) = Pr(X|P )Pr(P |W ) (2.2.8)

= Pr(X|Q)Pr(Q|PCD)Pr(PCD|P )Pr(P |W ) (2.2.9)
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whereQ, PCD andP represents the HMMstates, context dependent phonemes and context
independent phonemes respectively. The link between the word segmentsW and the con-
text independent phonemes P is provided by the lexical model Pr(P |W ), derived from a
dictionary associating each word from the language model to a sequence of phonemes as
shown in Table 2.1.

The building blocks of ASR are implemented in toolkits like Kaldi [3], in the form of
WFSTs [28]. The weights in WFST can be interpreted similar to a probability. The lan-
guage models are implemented as a grammarWFST, referred to as G.fstwhich encodes
the information in Pr(W ). It accepts valid sequences of words, and returns both a weight
and that same sequence of words. To encode the lexical information about word pronun-
ciation from the PL, Kaldi uses a WFST called L.fst. This WFST accepts a sequence
of phonemes and returns a word and a weight and it is derived from the probabilities
Pr(P |W ). The nextWFST, calledC.fst, encodes information about the relationship be-
tween context independent phonemes in the lexicon and the context dependent phonemes
PCD, whose states form the HMM. The final WFST, called H.fst maps the HMM state
labels to PCD, ie., Pr(Q|PCD) [14]. Once the H, C, L and G WFSTs are created, they are
composed from right to left to form a single WFST, after which HMM self-loop arcs are
added to form the final HCLG.fst which maps state labels to word sequences [17, 29].
While composing, determination and minimisation operations may also be performed at
intermediate stages to reduce the graph size and complexity [17].

Figure 2.6: Finite state acceptor graph formed by the sequence of M feature vectors ex-
tracted from speech to be decoded

During the decoding phase, the acoustic feature vectors corresponding to the speech to
be decoded is extracted. If there are M feature vectors, then a finite state acceptor graph
with state labels 0 to M is constructed as shown in Fig. 2.6 [29]. If there are K HMM
states defined in our acoustic model, then there will beK possible transition paths between
every state. These transition paths are given the same labels as that of the HMM states,
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Qi; i = 1, 2, ..K and the corresponding observation probability Pr(Q|X) as weights.
These probability values are obtained from GMMs or DNNs based on the type of acoustic
model used.

This graph is composed with the ASR model graph HCLG.fst, to obtain a search space.
A Viterbi decoding is performed on this final graph, by applying beam pruning to reduce
the exponential search space [18, 30]. This returns the best decoding path and thus a
decoded sequence of words.

2.2.2 End to End (E2E) Architecture

Another major round of revolution in the field of ASR occurred with the advent of an
alternate approach of End to End (E2E) ASR. E2E system is a type of ASR model that
directly maps the raw audio input to the final text output, without the need for separate
acoustic, language and pronunciation modelling stages. E2E models are typically trained
on massive datasets (thousands of hours) which are available only to high resource lan-
guages. This is because E2E training techniques require thousands of hours of data to
learn a mapping of audio directly to characters without any explicit intermediate linguis-
tic representations.

The training techniques that learns sequence to sequence mapping between acoustic fea-
ture frames and character sequences has evolved a lot during the past few years [31]. There
are explicit alignment approaches like connectionist temporal classification (CTC) [32],
recurrent neural network (RNN) [33] transducer and recurrent neural alignment (RNA)
[34] and implicit alignment approaches like attention based encoder decoder (AED) meth-
ods. In addition to the massive data requirement, the training procedure is compute-
intensive with specialised hardware requirement [35].

For low resource languages like Malayalam, where the availability of annotated speech
corpora under open licenses is limited to less than 100 hours, training an E2E ASR from
scratch is practically impossible. However there is much more text data available to train
separate language models. That has motivated the researcher to stick on to the hybrid
DNN-HMM architecture, where acoustic models can be trained on the available smaller
corpora and leverage the language model to obtain good decoding results [36]. But at the
time of writing this thesis, there are many pre-trained E2E models trained using self su-
pervised learning approach [37,38]. They are trained on many multilingual un-annotated
speech datasets, many of which are undisclosed. These pre-trained models can be fine
tuned on a small annotated speech dataset, which may be a promising approach for low
resource languages.
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2.3 Grapheme to Phoneme Conversion Systems

This section focuses on a broad review on automatic G2P conversion systems available
in Malayalam and its relation with other world languages. Solutions for automatic G2P
conversion in one language may not be the optimal solution applicable for a different
language. There are problems with different levels of difficulty that should be solved for
each language or language family separately [39].

Malayalam is a morphologically complex low resource language with very little tran-
scribed audio datasets and no openly available pronunciation lexicons. For languages
with very little transcribed audio datasets available for speech related tasks, a precise G2P
conversion can ensure better acoustic modelling, even in E2E [37] ASR systems.

In many languages, G2P correspondence depends on the relative position of grapheme
within a word and a syllable, which makes syllable boundary identification important
for phoneme level analysis. Segmenting words to syllables has got further applications
in machine translation systems and speech to text systems especially in the context of
morphologically complex languages where subword level units improve system perfor-
mance [36, 40].

Various works on mapping graphemes in Malayalam to phonemes have been reported in
literature. There are language-specific as well as language-independent tools. Data driven
and knowledge based approaches are the two main G2P strategies. While languages with
sufficient amounts of annotated data for training primarily rely on data driven techniques,
languages with well documented pronunciation rule sets use knowledge based solutions.
In the former, the G2P rules are learned directly from data, whereas in the latter, rules are
constructed using linguistic expertise. Most of the G2P tools in Malayalam follow rule-
based rather than machine learning approaches. This is primarily due to the simplicity of
rule-based approach and secondarily due to unavailability of annotated data for training.
Implementation of rule-based approaches require thorough linguistic know-how.

Data driven approaches perform G2P mapping by dictionary lookups [41], decision trees
[41], conditional random fields [42], pronunciation by analogy [43] or joint sequence
alignments [44]. Recently, deep learning architectures for G2P have been developed based
on RNNs [45], convolutional neural network (CNN)s [46] and transformers [47]. Zero
shot G2P techniques without explicit training data have been proposed, but they are based
on the assumption that similar language families use the same orthography, which is not
always true [48]. Phonetisaurus [49] is a data driven tool that learns the mapping rules
statistically (joint sequence models) from a training dataset and builds weighted FSTs for
G2P conversion. Malayalam does not have a good quality annotated data set for G2P
training and a Phonetisaurus model for Malayalam has not been reported yet.
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For languages with regular G2P conversion patterns, knowledge based G2P has been re-
ported to produce good results [48, 50]. A set of sequential rewrite rules can be used to
achieve this. Agglutinative languages like Turkish [51] and Amharic [52] have reported
works on language specific knowledge based G2P conversion using FST technology. Epi-
tran [53], an open source tool using rule based FSTs for G2P conversion of more than 61
world languages recently added Malayalam support, with preliminary mapping between
graphemes and phonemes. Hybrid approaches that applies linguistic rules on statistical
G2P mappings have been reported for Khmer language [50].

2.3.1 A Review of G2P Tools in Malayalam

This section focuses on G2P tools that works for Malayalam. Being a language with
regular orthography, most of the G2P conversion tools in Malayalam follow knowledge
based approaches [54–60] rather than data driven methods. The only data driven method
is based on encoder-decoder architecture [61] and uses data prepared using an existing
knowledge based solution, Unified Parser. Table 2.2 compares the functionalities of dif-
ferent grapheme-phoneme conversion tools available for Malayalam. Here, we examine
each of their features and drawbacks in detail.

Table 2.2: Comparing the functionalities and features of
G2P conversion tools in Malayalam
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Unified Parser [55] ✓ ✓ ✓ ✓
Espeak [54] ✓ ✓ ✓ ✓ ✓
Festvox [56] ✓ ✓ ✓ ✓
Aksharamukha [57] ✓ ✓ ✓ ✓
Indic NLP [58] ✓ ✓ ✓ ✓
Code-switched [59] ✓ ✓
LTS [60] ✓ ✓
Encoder-Decoder [61] ✓ ✓
Mlphon ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

• Unified parser [55] is a multi-lingual open source tool for parsing Indian languages
and converting it to a common label set of phonemes in syllabified form. In its
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language-specific logic, it doesn’t take into account any of the Malayalam pronun-
ciation modification rules other than the addition of inherent vowels. This tool does
not perform grapheme level syllabification .

• Espeak [54] is an open source speech synthesis system that has a G2P module and it
supports Malayalam. Even though phoneme syllabification is supported by Espeak,
it does not syllabify graphemes.

• Festvox Indic frontend perform G2P, for TTS systems. It uses X-SAMPA phone set
[56]. On analysing the transcription it provides, many contextual rules are observed
to be missing for Malayalam and it does not support syllabification of graphemes.

• Aksharamukha [57] script converter is an open source tool that supports G2P for
many languages. However language specific contextual logic is lacking for Malay-
alam. It can not be used to create a pronunciation lexicon, as it does not provide
delimiters between phonemes. It syllabifies neither graphemes nor phonemes.

• The Indic NLP library [58], supports syllabification of graphemes and performs
G2P. This tool lacks delimiters between phonemes, so it cannot be used to create a
pronunciation lexicon.

• FST based G2P mapping for code switched Malayalam-English text has been re-
ported in [59], where English words are phoneme mapped using CMUDict2 and
contextual rule based FST was used for Malayalam. This tool is not open source
and hence not freely available for further use, research or analysis.

• Using basic letter to sound (LTS) rules, an automatic pronunciation lexicon creation
work was proposed in [60]. It uses a naive Bayes classifier to identify native and
English language words and use different set of LTS to perform the G2P mapping.
This tool is not openly available for further research and analysis.

• The only deep learning based data driven approach for Malayalam G2P conversion
uses Unified Parser for creating the data set for training and testing the model [61].
It has the same features and shortcomings as the Unified Parser tool.

Based on our detailed analysis of the available tools cited above, it was found that none of
these tools have full coverage of pronounceable characters defined inMalayalamUnicode.
None of these tools could handle the overloading of the letters ഫ (labiodental fricative
and and also as labial aspirated plosive) ന (dental nasal and also as alveolar nasal) and
their disambiguation. Each of these tools follow different choice of phonetic alphabets
and mapping criteria, making them incompatible for a meaningful comparison.

2CMUDict- The CMU Pronouncing Dictionary: http://www.speech.cs.cmu.edu/
cgi-bin/cmudict
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2.3.2 Ready to Use Pronunciation Lexicon

Availability of a ready to use phonetic lexicon is an essential linguistic resource for ASR
and text to speech (TTS) tasks. CMUDict3 is an open source machine readable pronunci-
ation dictionary for North American English that contains over 134,000 words and their
pronunciations [62]. Similar efforts for creating pronunciation dictionaries for different
world languages are reported in literature, namely; Globalphone, providing pronuncia-
tion dictionary of 20 world languages [63], The LC-STAR phonetic lexica of 13 different
languages [64], Arabic speech recognition pronunciation dictionary with two million pro-
nunciation entries for 526,000 modern standard Arabic words [65], ASR oriented Indian
English pronunciation dictionary [66], manually curated Bangla phonetic lexicon of 65k
lexical entries prepared for TTS [67] are to mention a few.

However openly available large vocabulary pronunciation lexicon has not been reported
for Malayalam, till date. The reported works on Malayalam pronunciation lexicons has
mostly been done manually or semi-automatically with a small or medium vocabulary for
ASR tasks [68,69]. Agricultural speech and text corpora for Malayalam with 4k manually
transcribed phonetic lexicon entries has been reported by Lekshmi et al. [70]. Considering
the agglutinative nature of Malayalam language and its practically infinite vocabulary, a
manually curated, small sized pronunciation lexicon would be inadequate for general do-
main speech tasks [71]. Also there could be need for expanding the vocabulary of lexicon
as new words get added to the language in the form of proper nouns and loan words. Such
lexicons, if available can serve as high quality annotated data sets for bootstrapping data
driven G2P training.

2.4 Morphological Complexity Analysis

In linguistic research, measuring the morphological complexity of a language is a crucial
area of investigation. Morphology refers to the study of the structure of words, including
the formation of words and their grammatical endings, prefixes, and suffixes. The com-
plexity of a language’s morphology can be measured by analysing the number and type
of morphemes present in its words and examining how they interact with one another to
formmeaning [72]. The study of morphological complexity is significant because it sheds
light on how languages differ from one another and helps us understand the cognitive de-
mands involved in using different languages. Morphological complexity of a language has
its impact on applications like ASR where speech to text conversion depends largely on
the underlying language model. A measure of the complexity is important for improving
and adapting the existing methods of NLP [73]. In this section we discuss what are the
different techniques by which morphological complexity are quantified and how are they

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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related.

Morphological complexity can bemeasured either in terms of the average number of gram-
matical features getting encoded into a word or in terms of the diversity of word forms
occurring in the text corpus of a language. The former approach is called typological anal-
ysis and the latter one is called corpus based analysis of morphological complexity [74].
The number of possible inflection points in a typical sentence, the number of inflectional
categories, and the number of morpheme types are all morphological complexity indica-
tors [72]. It requires a strict linguistic supervision to analyse each word in terms of its
morpheme types to quantify complexity in this manner. The work in [73] suggested esti-
mating the morphological complexity of a language directly from the diverse wordforms
over a corpus, which is a relatively easy and reproducible way to quantify complexity
without the strict need for linguistic annotated data. A study was conducted to analyse
morphological complexity using both human expert judgement and corpus based analy-
sis [74]. Its findings revealed a strong correlation between the two approaches.

Various approaches have been proposed to quantitatively represent the morphological
complexity of a language. One such approach, proposed in [75], involves using a text
corpus based parameter, namely, type token ratio (TTR) and moving average type token
ratio (MATTR), to analyse and compare various European languages. According to the
work in [76], MATTR is a reliable measure of linguistic complexity, independent of the
total corpus length. Moreover, [75] compared corpus based parameters such as TTR and
MATTR with other methods of complexity measures and concluded that both parameters
provide a reliable approximation of themorphological complexity of languages. In current
research, we rely on the corpus based parameters of TTR and MATTR to quantitatively
analyse morphological complexity of Malayalam.

2.5 Subword Based Morphology Aware ASR Systems

ASR is challenging for low resource languages in a morphologically complex setting [7].
Morphological complexity is characterised by productive word formation by agglutina-
tion, inflection, and compounding, leading to very long words with phonetic and ortho-
graphic changes at morpheme boundaries [77]. Malayalam language is known to have a
high level of morphological complexity than many other Indian and European languages
in terms of TTR and type token growth rate (TTGR) [9, 71]. This creates a large num-
ber of low frequency words and it is practically impossible to build a PL that covers all
complex wordforms. Additionally, it introduces the problem of data sparsity in language
modeling [36]. Morphology aware ASR systems are designed to improve the accuracy of
speech recognition by taking into account the morphological structure of the language by
making sufficient modifications in the conventional word based LM and PL.
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To build subword level models of pronunciation lexicons and language grammar, the
words in conventional LM training corpus has to be separated into smaller units called
subwords. The subwords should have some indicators to show, if they belong to a set
of subwords that could appear at the end of a word. It is important in ASR decoding be-
cause, non word-end subwords should be concatenated with the subsequent subword units
to create a complete word [78].

Algorithms to split language model training corpus to morpheme units have been explored
for ASR systems in many morphologically complex languages including Finnish, Arabic
and Swedish [11, 36]. Data driven algorithms for subword segmentation like byte pair
encoding (BPE) and Unigram has also been explored for many other languages including
Tamil, Hindi Kannada and Marathi [17,79,80]. Different language modelling techniques
has been used optimise the performance of automatic speech recognition in Sanskrit [81].
This work compared word level and subword level (byte pair encoding and vowel segmen-
tation) modelling of the text corpus and its impact on OOVword detection andWER [81].
A work on similar lines of Malayalam English code switched ASR has been explored
where a hybrid algorithm for subword segmentation was proposed and which reported
improved ASR performance [82].

A detailed investigation of various approaches for subword segmentation in Malayalam
ASR and its impacts on WER is presented in Chapter 6.

2.6 Malayalam Speech Corpora

Speech corpora with corresponding transcripts is an essential requirement in training ASR
systems. We document the list of open licensed Malayalam speech corpora, available for
training and testing Malayalam ASR systems.

1. IIITHyderabad (IIITH) corpus4 is preparedwith the support of theministry of the
Information and Communication Technologies, Government of India. Recorded in
a professional recording studio, this dataset contains 1 hour 40 minutes of Malay-
alam speech by a single male speaker. Each sentence is recorded at 16 kHz and
encoded at 16 bits per sample [83].

2. Indian Institute of Technology Madras (IITM) corpus5 is prepared by a consor-
tium of Universities led by the Indian Ministry of Information Technology. It is a
corpus primarily aimed for developing TTS for different Indian languages, includ-
ing Malayalam. Recorded by professional voice talents in an anechoic chamber, the
dataset contains 17 hours of Malayalam speech by one male and one female speak-

4http://www.festvox.org/databases/iiit_voices/
5https://www.iitm.ac.in/donlab/tts/database.php
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ers. Each sentence is recorded at 48 kHz and encoded at 16 bits per sample [84].

3. Open speech and language resources (Open SLR) corpus 6 is a crowd sourced,
high quality, multi-speaker, multi-language speech dataset by Google. Recorded
in a portable 3x3 acoustic vocal booth, the dataset contains 5 hour 30 minutes of
Malayalam speech by 24 female and 18 male speakers. Each speech utterance is
recorded at 48 kHz and encoded at 16 bits per sample [85].

4. Malayalam speech corpus (MSC)7 is a crowd sourced speech corpus that contains
conversational Malayalam sentences recorded by volunteers in natural home and
outside environment. The curated collection of MSC contains 1541 speech samples
from 75 contributors amounting to 1 hour 38 minutes of speech. Speech files are
single channel audio in raw audio format sampled at 48 kHz and encoded with 16
bits per sample [86].

5. CommonVoice8 is a crowd sourced collection of speech published byMozilla foun-
dation. It has about 1 hour of validated speech recorded by 31 speakers and verified
by volunteer contributors. The speech files and made available in mp3 format.

6. ICFOSS Malayalam speech corpus (IMaSC)9 is a studio recorded speech cor-
pus that contains Malayalam sentences read and recorded by 8 speakers [87]. This
corpus created with financial support of the International Centre for Free and Open
Source Software (ICFOSS) contains of 34473 speech samples from 4male and 4 fe-
male contributors amounting to 50 hours of speech. Speech files are single channel
audio in raw audio format sampled at 16 kHz and encoded with 16 bits per sample.

Table 2.3: Details of Speech data sets available under open license so that the derived
models can have unrestricted usage.

Corpus #Speakers #Utterances Duration Environment Year
(minutes)

IIITH [83] 1 1000 98 Studio 2012
IITM [84] 2 8601 838 Studio 2016
Open SLR [85] 44 4025 287 Studio 2019
MSC [86] 75 1541 98 Natural 2020
Common Voice 31 3557 60 Natural 2022
IMaSC [87] 8 34473 30000 Studio 2022

All our experiments on Malayalam speech recognition have used subsets of these corpora
for training and testing purposes. The exact usage are clearly indicated in the experiment
description section.

6http://www.openslr.org/resources/63
7https://blog.smc.org.in/malayalam-speech-corpus/
8https://commonvoice.mozilla.org/en/datasets
9https://www.kaggle.com/datasets/thennal/imasc
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2.7 Malayalam Speech Recognition Systems

The development of a robust Malayalam ASR system presents several challenges, includ-
ing the complex phonology and morphology of the language, the wide range of accents
and dialects spoken in different regions, and the limited availability of high-quality speech
data. To address these challenges, researchers have proposed various approaches for de-
veloping Malayalam ASR systems. Several research studies have been conducted in the
area of Malayalam ASR, focusing on different aspects of the classical ASR architecture,
such as speech data collection, feature extraction, acoustic modelling, languagemodelling,
and grapheme to phoneme conversions. There are recent works on developing ASR sys-
tems with modern E2E architecture as well.

Based on the approach used in recognising Malayalam speech, the ASR researches in
Malayalam language can be broadly classified as:

1. Word level Pattern Classification

This approach considers speech recognition as a word level pattern classification
problem. Features extracted from speech are used as the input and the words to be
classified are the output.

In 2008, Krishnan et al. [88] reported one of the earliest studies on isolated word
recognition in Malayalam using an artificial neural network (ANN) based five class
classifier. The study utilised five disyllabic words spoken by eight distinct speakers
for both training and testing the system. The ANN classifier consisted of 12 input
nodes and 6 hidden nodes, with wavelet-based features being fed as the input feature
vector. During the testing phase, the system was able to accurately recognise 89%
of the presented words.

In 2010, Cini et al. developed an isolated digit recognition system with a support
vector machine (SVM) based classifier that utilised MFCC as the acoustic feature
[89]. The system achieved a digit recognition accuracy of 97.6%.

In 2013, Sunny et al. [90] developed a recognition system for 20 isolatedMalayalam
words. It was basically a 20 class classifier using ANN with wavelet based features
at input nodes. The system demonstrated a word recognition accuracy of 87.5%.

2. GMM-HMM pipeline ASR

This has been the most popular approach in continuous speech recognition that uses
HMMs to model phoneme states, which are concatenated to form words and finally
sentences. The HMM based phoneme state probabilities with respect to the ob-
served feature vectors can either be generatively trained using GMMs or discrim-
inatively trained using machine learning or deep learning. This section reviews
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previous researches based on GMM-HMM approach.

Cini et al. reported a continuous digit recognition system in 2009, which utilised
the pipeline architecture with acoustic features such as MFCC and linear prediction
coefficient (LPC). The system achieved a high digit recognition accuracy of 99%
[91].

In 2011, Cini et al. reported the development of another isolated Malayalam digit
recognition system using PLP acoustic features and GMM-HMM based acoustic
modelling [92]. The system achieved an accuracy of 99% in digit recognition.

A continuous Malayalam speech recognition system using the pipeline architecture
with GMM-HMM for acoustic modelling, n-grams for statistical language mod-
elling and a static PL was reported by Kurian et al. [93] in 2012. The system was
developed by training the acoustic models with context dependent triphones as the
fundamental speech unit. PLP coefficients were used as the acoustic feature for
creating the AM. It was a small vocabulary ASR with 102 words in the PL, created
using manual corrections over an automated G2P task. 420 manually transcribed
speech samples were created by the authors for the purpose of training and testing.
The research reported a word recognition accuracy of 89%.

A dictation system for Open Office Writer was developed by Devi et al. in 2012.
It was a continuous speech recognition system trained on 25 hours of an in house
speech corpus recorded in an office environment. The ASR system was built using
CMU Sphinx toolkit with MFCC as the acoustic feature and GMM-HMM to model
the triphone acoustic representation. With a vocabulary of 5000 words, the pronun-
ciation lexicon contained 71 unique phones. However the evaluation of the system
in terms of any metric was not reported [94].

An isolated word recognition system proposed by Moneykumar et al., in 2015, is
implemented using HTK toolkit. This work compared the effectiveness of GMM-
HMM based workflow using HTK toolkit with ANN based classifier and reports a
better performance for the latter in the context of recognising 100 isolated words
[95].

In 2018, Deekshita et al. [96] reported the development of an in house speech cor-
pora of Malayalam spoken stories that amounted to 203 minutes of audio. This
pipeline ASR system was developed using CMU Sphinx toolkit. The GMM-HMM
based context independent monophone model was built usingMFCC as the acoustic
feature. The order of n-gram statistical LM and the vocabulary size of the PL was
not specifically mentioned. The system when evaluated on a held out test dataset,
reported a WER of 34.8%.
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Babu et al. [97] also reported a work on continuous speech recognition system in
Malayalam using Kaldi toolkit with pipeline architecture in 2018. It used an in
house spoken story database and All India Radio corpora for training and testing.
The GMM-HMM based acoustic model was created using monophone and triphone
(and its standard variants) speech units. The language models were created on cor-
responding speech transcripts. The number of entries in the PL was not explicitly
reported. The evaluation on different combinations of held out test set demonstrated
the impact of domain specific data on the decoding performance. The best WER
reported in this system was 34.4%, on maximum likelihood linear transformation
(MLLT) based triphone acoustic model.

3. ANN-HMM pipeline ASR

This section reviews researchworks that used discriminative training criteria to clas-
sify phoneme states using ANN framework.

A continuous Malayalam speech recogniser for a small vocabulary of 540 words
were reported in 2012 by Anuj et al [98]. The training and testing was reported on
a dataset of 540 words over 180 sentences created by the authors. The system used
25 context independent phonemes (monophones in ASR terminology) as speech
units. The acoustic representation of phonemes were modelled using HMM and the
hidden state probabilities in it were modelled using multi layer perceptron (MLP)
based ANN. Using MFCCs as feature vectors and with no explicit language model,
the system reported a WER of 13.3% on the held out test dataset.

4. DNN-HMM pipeline ASR

Here we discuss research works that use discriminative training criteria to classify
phoneme states using DNN framework.

Usage of DNN-HMM acoustic modelling for continuous speech recognition was
performed by Moncy et al. in 2020 [99]. It has the highest lexicon size of all
previously reported Malayalam ASR of 27500 words. The system has a WER of
3.01% using the the best DNN-HMM acoustic model. The surprisingly low WER
be probably due to over-fitting caused by exclusion of the test data set from AM,
but not from LM.

In 2022, open vocabulary ASR system for Malayalam using subword modelling has
been explored by Manghat et al. [82]. The experiment was carried out in a private
English-Malayalam code switched dataset that resulted in a WER of 39%.

5. E2E ASR

It is difficult to train E2E ASR models from scratch for low-resource languages due
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to the limited availability of training data. However, the emergence of transformer
models that are pre-trained on large cross-lingual and multi-lingual speech datasets
has made it possible to fine-tune them on small labelled target language datasets,
resulting in improved E2E ASRs for low-resource languages.

To create an E2EASRmodel forMalayalam, Gautham fine-tuned theXLSR-Wav2Vec
2.0 transformer, which was pre-trained on speech data from 53 languages, and
achieved a WER of 28% 10.

Another research study byAnoop et al. explored the use of a common phonemic rep-
resentation label set for Tamil, Telugu, Malayalam, and Sanskrit by fine-tuning pre-
trained multilingual speech representation models (Wav2Vec and Indic Wav2Vec)
on a small labelled dataset [35]. The study utilised multilingual acoustic models
and monolingual language models, resulting in a WER of 19.1% on Malayalam.

The majority of the ASR systems discussed in this section utilised proprietary datasets,
while those that used openly accessible datasets did not specify the exact division of their
training and testing data. Moreover, due to the lack of a standardised evaluation dataset for
Malayalam ASR, comparing the findings of these studies based only on the WER metric
would be less meaningful and impractical. However, in the research conducted for this
thesis, we have made sure to disclose all the necessary information regarding our training
and testing datasets, allowing for future comparisons.

2.8 Summary

In conclusion, this literature review chapter has provided a comprehensive overview of
various aspects involved in developing an effective ASR system for the Malayalam lan-
guage. We started by reviewing different speech recognition architectures and justifying
the selection of a hybrid DNN-HMM architecture. We also discussed the importance of
G2P conversion systems, pre-built lexicons, and the challenges posed by the high degree
of morphological complexity of Malayalam. We explored some of the approaches and
techniques that researchers have used to address these challenges and build effective ASR
systems for languages with high morphological complexity. We documented the different
openly available speech and text corpora in Malayalam for developing speech and lan-
guage technology applications. Finally, we reviewed previous works on the development
of ASR systems for Malayalam, which helped us understand the progress made in this
field and the areas that require further attention in developing an effective ASR system for
Malayalam. Overall, this literature review will provide the foundation for the subsequent
chapters that focus on the development of an ASR system for the Malayalam language.

10https://huggingface.co/gvs/wav2vec2-large-xlsr-malayalam
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Chapter 3

Quantitative Analysis of the
Morphological Complexity of

Malayalam
3.1 Introduction

To lay the groundwork for the research works that aim to overcome the linguistic chal-
lenges in ASR for Malayalam, this chapter takes on the task of quantifying the morpho-
logical complexity of the language. To achieve this, we perform a quantitative analysis
of the language’s morphological complexity on a text corpus containing approximately 8
million words. The analysis utilises key parameters such as TTGR, TTR, and MATTR to
determine the extent of the language’s morphological complexity. We compare the ob-
tained parameter values with those of other morphologically complex languages, gaining
valuable insights into the unique linguistic characteristics of Malayalam. The insights
gained from this analysis will provide a better understanding of the linguistic characteris-
tics of Malayalam, which will be useful in developing efficient and accurate ASR systems
for the language. By establishing a comprehensive understanding of the morphological
complexity of the Malayalam language, this chapter serves as a solid foundation for the
subsequent research endeavours in the field of Malayalam ASR.

3.2 Morphological Complexity

Malayalam1 is a language with complex word morphology. Malayalam words undergo
inflections, derivations and compounding producing an infinite vocabulary [10]. As a
language with high morphological complexity it has a large number of wordforms derived
from a single root word (such as the English words houses and housing, which stem from
the same root word house). Morphological complexity can be measured either in terms
of the average number of grammatical features getting encoded into a word or in terms
of the diversity of word forms occurring in the text corpus of a language. The former
approach is called typological analysis and the latter one is called corpus based analysis
of morphological complexity [74]. The level of morphological complexity present in a

1https://en.wikipedia.org/wiki/Malayalam
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language can significantly impact applications such asASR,where the accuracy of speech-
to-text conversion largely depends on the underlying language model. Measuring this
complexity is crucial in improving and adapting existing methods of NLP to better suit
the unique linguistic characteristics of the language [73].

Malayalam has seven nominal case forms (nominative, accusative, dative, sociative, loca-
tive, instrumental and genitive), two nominal number forms (singular and plural) and three
gender forms (masculine, feminine and neutral). These forms are indicated as suffixes to
the nouns. Verbs in Malayalam get inflected based on tense (present, past and future),
mood (imperative, compulsive, promissive, optative, abilitative, purposive, permissive,
precative, irrealis, monitory, quotative, conditional and satisfactive), voice (active and
passive) and aspect (habitual, iterative, perfect) [10, 100]. The inflecting suffix forms
vary depending on the final phonemes of the root words. Words agglutinate to form new
words depending on the context [101]. Table 3.1 gives examples of a few complex word
formation in Malayalam.

Table 3.1: Complex morphological word formation in Malayalam

Malayalam Word English Transla-
tion

Remark

െപട്ടിയിൽ (peʈʈijil)  in the box Nominal locative suffix to
the word െപട്ടി (peʈʈi, box) 

കുട്ടിേയാട് (kuʈʈijoːʈ)  to the child Nominal sociative suffix to
the word കുട്ടി (kuʈʈi, child) 

ആന�ട്ടി (aːnakkuʈʈi)  baby elephant Compound word formed
by agglutination of nouns
ആന (aːna, elephant) and
കുട്ടി (kuʈʈi, baby)

ആന�ട്ടികേളാട് 
(aːn̪akkuʈʈikaɭoːʈ) 

to the baby elephants Nominal sociative suffix to
the plural form of the com-
pound word ആന�ട്ടി (aː-
nakkuʈʈi, baby elephant)

ഉണർന്നിരിക്കണ്ട 
(uɳaɾn̪n̪iɾikkaɳʈa) 

do not stay awake Negative imperative mood
of the verb ഉണരുക
(uɳaɾuka, be awake)

പാടിെക്കാണ്ടിരി�ം
(paːʈikkoɳʈiɾikkum) 

will be singing Future tense iterative aspect
of the verb പാടുക (paːʈuka,
to sing)

The productive word formation and morphological complexity of Malayalam are docu-
mented qualitatively in the domain of grammatical studies. However a quantitative study
on the same is not yet available for Malayalam language. Adoption of general NLP so-
lutions of high resource languages like English is not feasible in the setting of morpho-
logically complex languages. A functional morphology analyser, Mlmorph addresses the
morphological complexity of Malayalam applying grammatical rules over root word lex-
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icon [10]. Quantification of linguistic complexity is important to adapt and improve vari-
ous NLP applications like automatic speech recognition, parts of speech tagging and spell
checking [102–105]. This study aims at quantifying the morphological complexity of
Malayalam in terms of corpus linguistic parameters.

3.3 Dataset

This study is performed on Malayalam running text from Wikipedia articles. The Malay-
alam Wikipedia dump is curated and published by Swathanthra Malayalam Computing
(SMC) as SMC Corpus [106]. It consists of 62302 articles. The Malayalam running
text often has foreign words, punctuation and numerals present in it. The corpus is first
cleaned up to eliminate non Malayalam content and punctuation. It is then Unicode nor-
malised [107]. The cleaned up corpus contained 8.14 million Malayalam words. The
nature of the text is formal encyclopedic Malayalam.

3.4 Experimental Details

An element of the set of distinct wordforms in a running text is called a type. Every
instance of a type in the running text is called a token. For example, in the sentence, To
be or not to be is the question, there are 7 types and 9 tokens. The types to and be repeat
two times each. The relationship between the count of types and tokens is an indicator
of vocabulary richness, morphological complexity and information flow [73]. The TTR
is a simple baseline measure of morphological complexity [75]. TTR is calculated by the
formula defined in equation 3.4.1, where V is the count of types and N is the count of
tokens.

TTR = V

N
(3.4.1)

The type count gets expanded due to productive morphology and higher values of TTR
correspond to higher morphological complexity [74]. However TTR is affected by the
token count, N [76]. Larger the corpus, it is more likely that the new tokens belong to the
types that have occurred already. The value of TTR gets smaller with the increase in token
count. Computing TTR over incrementally larger corpus can indicate how the TTR varies
with the token count. In this study, TTR is computed with different token counts starting
with 1000 and increasing up to the entire corpus size. This has enabled comparison of
Malayalam with the morphological complexity of other languages whose TTR values are
available in literature for different token counts.

The TTGR curve is obtained by plotting the graph of token count vs. type count. It
indicates how many new types appear with the increase in the token count. If the slope of
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the growth rate curve reduces and approaches a horizontal line, at a lower value of token
count, it indicates a simple morphology [9]. For a morphologically complex language, the
type count continues to grow with the token count [108].

The MATTR computes the relationship between types and tokens that is independent of
the text length. Its efficient implementation by Covington et al. has been used by Kettunen
to compare the morphological complexity of different European languages [75, 76]. The
algorithm to compute MATTR is as described in Algorithm 1 [109]:

Algorithm 1 Computation of MATTR
Require: A text Corpus, C
1: procedureMATTR
2: N← length of corpus
3: L← length of window (L<N)
4: start← initial position of window
5: i = start ▷ index of window position
6: while i ≤ (N − L + 1) do
7: Vi = type count in the window [i, i + L− 1]
8: TTR(i) = Vi

L

9: i = i + 1
10: end while
11: MATTR(L) =

∑N−L+1
i=1 T T R(i)

N−L+1
12: end procedure

The corpus with N tokens is divided into the overlapped subtexts of the same length, say
L, the window length. Window moves forward one token at a time and TTR is computed
for every window. MATTR is defined as the mean of the entire set of TTRs [76]. In
this work, L is chosen as 500, enabling comparison with other languages in the study by
Kettunen, where the window length is 500 [75].

3.5 Result and Discussion

Counting the types and tokens on SMC Corpus [106], TTGR and TTR curves are plotted.
Fig. 3.1 shows the TTGR curve on the left and the TTR on the right. TTGR curve shows
a steep rise initially. As the token count reaches 8 million, the type count is around 1.2
million. But the curve does not flatten even at that token count. This pattern is a common
property of Dravidian languages as many unseen wordforms appear as the corpus size is
increased [9]. TTR is very high at around 0.82 when the token count is 1000. TTR reduces
to around 0.44 when the token count is 0.1 million and finally flattens to a value of 0.16
for the full corpus of 8 million tokens.

To compare the TTR obtained for Malayalam with that of other languages, we have used
the results reported for European languages by Kettunen and for Indian languages by Ku-
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Figure 3.1: TTGR and TTR plot of Malayalam for SMC Corpus of Wikipedia text
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Figure 3.2: Comparison of Malayalam TTR with that of European Union Constitution
Corpus and DoE-CIIL Corpus

mar et al. [9, 75]. Fig.s 3.2a and 3.2b illustrates the comparison. Only those languages
with the highest reported TTRs in the respective works and English are used for com-
parison. The token size (in millions) used for computing TTRs is indicated for each lan-
guage. Malayalam clearly shows more morphological complexity than the European lan-
guages, Finnish, Estonian, Czech, Slovak, English and Spanish in terms of TTR values.
TTR values for Malayalam when compared with other Indian languages Marathi, Hindi,
Tamil, Kannada and Telugu clearly indicates a higher level of morphological complexity
for Malayalam.

MATTR is computed with window length, L = 500 over different segments of the SMC
corpus. TTR values for the segments with window position index 1-1000, 5001-6000,
15001-16000 and 18001-19000 are shown in Fig. 3.3. These segments gave MATTR
values 0.834, 0.839, 0.836 and 0.800 respectively. Computing MATTR with 0.1 million
tokens of SMC corpus resulted in a value 0.806 for Malayalam. Kettunen has reported
MATTR values on European Union constitution corpus with each language having a token
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Figure 3.3: TTR plotted at different segments of the SMC corpus for 1000 window posi-
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count slightly above 0.1 million [75]. The MATTR values reported by Kettunen with
the values obtained for Malayalam is plotted in Fig. 3.4. It clearly indicates a higher
degree of morphological complexity for Malayalam in terms of MATTR on a formal text
corpus. An equivalent comparison with other Indian languages could not be done due to
non availability of reported studies.
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Figure 3.4: Comparison of MATTR values computed for Malayalam on SMC Corpus
with that of European Union Constitution Corpus
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3.6 Summary

To conclude, this chapter provides a quantitative analysis of the morphological complex-
ity of Malayalam language on a formal text corpus of approximately 8 million words. The
analysis has revealed a high degree of morphological complexity in Malayalam, as ev-
idenced by the values of TTR and MATTR. It is essential to consider this aspect of the
language’s complexity while developing natural language processing applications, such as
ASR, spell-checking, and part-of-speech tagging, for Malayalam. To accomplish this, we
must create subword-based LMs and PLs for ASR, and perform a morphological analysis
of words for POS tagging and spelling correction. By taking these crucial steps, we can
develop more efficient and accurate NLP tools that cater to the unique linguistic charac-
teristics of Malayalam.
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Chapter 4

Finite State Transducer based
Grapheme to Phoneme Conversion

4.1 Introduction

Precise text processing taking care of intricate linguistic details is a pre-requisite for many
downstream NLP tasks. This chapter presents the motivation and steps involved in the
development of a knowledge based computational linguistic tool, Mlphon, that can solve
multiple text processing problems closely associated with speech related as well as some
general purpose NLP tasks. Mlphon is built on finite state transducer (FST)s to perform
multiple functions including G2P and phoneme to grapheme (P2G) conversions, syllabi-
fication on graphemes as well as phonemes, phonetic feature analysis, and script grammar
check for Malayalam language. The features of Mlphon are accessible through a pro-
grammable Python application program interface (API), that can be integrated with the
development process of ASR and TTS systems.

The need to perform precise G2P conversion on demand, to perform syllabification on
graphemes as well as phonemes, and to create a programmable API for integrating these
functionalities on downstream NLP tasks prompted us to develop the multifunctional tool
Mlphon. Our decision to use a knowledge-based approach was driven by the availability
of adequate linguistic descriptions. Even though there has been many previous attempts to
address one or more of these problems as discussed in section 2.3.1, Mlphon offers certain
unique features compared to these prior works which makes it a well suited tool for ASR
related tasks in Malayalam.

In this chapter, we will begin by exploring the importance of FSTs in pronunciation mod-
elling and provide an overview of the Mlphon toolkit’s architecture. Following that, we
will conduct an intrinsic evaluation of the Mlphon toolkit on a gold standard lexicon. We
will then showcase our publication of a large vocabulary pronunciation lexicon, consisting
of more than 100,000 words. Finally, we will demonstrate the practical applications of the
Mlphon toolkit including text sanity check, assisted pronunciation learning and phoneme
diversity analysis. This chapter aims to provide a comprehensive understanding of the
effectiveness of FSTs in pronunciation modelling for Malayalam.
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4.2 Malayalam Grapheme to Phoneme Correspondence

A grapheme is the smallest functional unit of the writing system of a language and a
phoneme is the smallest distinguishable sound unit of a language [110, 111]. The cor-
respondence between the two, largely depends on the nature of the writing system. For
G2P and P2G conversion tasks, most alphasyllabary languages have precise rule sets, un-
like non-phonemic scripts like English [53, 55]. The possible exceptions in rule sets, if
any, could be handled by exception dictionaries. For languages with non-phonemic writ-
ing systems, when a sufficient amount of annotated high-quality training data is available,
data driven solutions are generally preferred to extract linguistic information that is too
fuzzy and difficult to be captured by a finite set of rules.

Malayalam is a language spoken predominantly in the state of Kerala in southern India,
with about 38million native speakers. It belongs to the Dravidian language family, and has
an alphasyllabary writing system [112]. Though Malayalam script is largely phonemic in
nature, there are some unique characteristics like: (i) consonants with and without inherent
vowel, (ii) consonant clusters with pronunciation different from the consonants present in
them, (iii) special symbol virama, that contextually chooses its function depending on its
position in a word and (iv) graphemes being overloaded with non-native sounds in loan
words. A detailed analysis of the characteristics of Malayalam graphemes, phonemes and
the relation between the two are discussed in Appendix I.

4.3 FSTs for Pronunciation Modelling

Rule based mappings between graphemes and phonemes are basically context-sensitive
rewrite rules. Each rule specifies how a set of symbols get mapped to another set. FSTs
provide efficient methods for performing the composition of such rule sets to single mega
rule as described in [113] and [114]. This has made FST popular in many fundamental
NLP applications [10, 51–53, 115]. The rule set of Mlphon is written in Stuttgart finite
state transducer (SFST) formalism and compiled to FSTs [116].

Given that Malayalam linguistic literature contains well-established pronunciation mod-
elling rules [117–119], we computationally model these rules in a deterministic manner
using finite state transducers, which are ideal for this task [113]. FSTs are apt for morpho-
logical as well as phonological parsing of natural languages [113]. An FST maps between
two sets of symbols. Formally a finite state transducer T can be defined [30] as a set of
seven parameters (q, Σ, Γ, I , F , δ, σ) where

q is a finite set of states.

Σ is a finite set of input symbols
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Γ is a finite set of output symbols

I is set of initial states, a subset of q

F is a set of final states, a subset of q

δ : q × Σ −→ q is the transition function

σ : q −→ Γ∗ is the output function

Figure 4.1: An FST representing a simple pronunciation mapping that accepts two words
അവൻ and അവൾ.

In an FST, every state, qi, has a finite number of transitions to other states. An input and
output symbol is used to label each transition. According to the transition function, the
FST emits an output symbol for each symbol in the input string after changing its state,
starting from the initial state. When it enters the final state, the FST would have accepted
every symbol in the input string. The output string is made up of all the emitted symbols
at that point [120]. For the cases where the number of symbols in input or output strings
mismatch, a ‘null symbol’, ɛ is introduced in the transition mapping.

The FST described in Fig. 4.1, generates pronunciations for two wordsഅവൻ /aʋan/ and
അവൾ /aʋaɭ/. The states are represented as circles and marked with their unique number.
The initial state is represented by a bold circle and final states by double circles. An input
symbol i and an output symbol o are marked on the corresponding directed arc as i : o.
A special symbol ɛ indicates the generation of an output corresponding to an empty input
string. Here the inherent vowel a is inserted at the transition from the state q1 to q3. Its
parameters are defined in Table 4.1.

FSTs satisfy closure property, such that the inversion and composition of transducers are
two natural consequences. According to the composition property, if transducer T1 maps
from input symbols I1 to output symbols O1 and transducer T2 maps from O1 to O2, then
the composition T1||T2 maps from I1 to O2 [30]. The composition of a series of transduc-
ers perform the mapping from an input string to output string, passing through the states
defined by the constituting transducers. The inversion, T −1 of a transducer T , reverses
the input and output symbols. This inversion property has enabled the development of
Mlphon as a bidirectional G2P converter.

39



Table 4.1: Parameters of FST illustrated in Fig. 4.1 is defined in this table.

Parameters Definition
q {q0, q1, q2, q3, q4}
Σ {അ, വ, ൻ, ൾ, ɛ}
Γ {a, ʋ, n, ɭ}
I {q0}
F {q4}
δ δ(q0, അ) = q1; δ(q1, വ) = q2; δ(q2, ɛ)= q3;

δ(q3, ൻ) = q4; δ(q3,ൾ) = q4
σ σ(q0, അ) = a; σ(q1, വ) = ʋ; σ(q2, ɛ)= a;

σ(q3, ൻ) = n; σ(q3,ൾ) = ɭ

Mlphon, the tool we introduce is developed using SFST. SFST is programming language
for FSTs, written in C++ language [116]. It has a user-friendly Python API1, freely avail-
able under the GNU public license. SFST provides efficient mechanisms for defining
the input and output symbol sets for FSTs and the rules for contextually mapping an input
string to output string. SFST has been employed in the development of state of the art mor-
phological analysers for Turkish [115], German [121], Latin [122] and Malayalam [10].

The ruleset of Mlphon can be adapted with the necessary script modifications to other
Dravidian languages with a similar script nature. The rulesets and graphemes must be
adjusted to fit the target language. To enable this, we have made sure the source code is
accessible, well-documented, and freely licensed to allow for adaptations2.

4.4 Architectural Description

The system architecture of Mlphon is described in Fig. 4.2. We follow a modular ap-
proach in the design of Mlphon. The mapping from Malayalam script to IPA is carried
out in eleven steps, where each step represents an FST. In Mlphon, FST parameters are
not directly defined. They are instead compiled from SFST programs. An SFST program
is essentially a regular expression. They represent context sensitive rewrite rules. When
the programs are compiled, we get eleven transducers shown in the architectural diagram
in Fig. 4.2. Each solid rectangular box in this figure represents an FST that maps between
two sets of symbols. They are composed at compile time to give final FSTs in dotted
rectangular boxes. Mlphon Python library provides programmable access to these final
FSTs.

The SFST programs corresponding to the transducers are simplified and described in Al-
gorithms 2 - 5. In the algorithmic description we use the SFST syntax, where '|' indicates

1SFST Python library: https://pypi.org/project/sfst/
2https://github.com/kavyamanohar/mlphon
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Figure 4.2: The system architecture of Mlphon

the union operation, '||' indicates composition operation, ’←’ indicates the mapping of the
right hand side input symbol sequence to left hand side output symbol sequence. They are
represented in the form: D← [A] B [C], where B is the input with an optional left context
A and a right context C, being mapped to the output D. A, B, C, and D can represent a sin-
gle symbol or a sequence of symbols. The individual symbols in a sequence is separated
by a '+', for enhanced readability.

For transducers that carry out complex tasks, the expressions might be quite complicated.
In order to create complex expressions from simpler ones, variables are defined [123]. The
SFST program is structured as a combination of (i) one-to-one and one-to-many mappings
from input symbols to output symbols, (ii) contextual mappings of input symbol sequence
to output symbol sequence, and (iii) self mappings where input symbols are passed as
such to the output. Additional information is provided in comments in the algorithmic
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description. The individual FSTs are composed at compile time to the final FST structures
namely:

1. Syllabifier

2. Phoneme analyser

3. Grapheme-Phoneme (G-P) converter

These three FSTs are bundled into Mlphon Python library along with various utility func-
tions and released under MIT license. The programmable Python API enables its integra-
tion with many downstream NLP tasks as demonstrated in section 4.10. The functionali-
ties of the individual FSTs are described in sections 4.4.1 to 4.4.11. Wherever it is essential
to communicate the functionality, state transitions in each FST are diagrammatically rep-
resented.

4.4.1 Normalisation

This FST accepts all Malayalam characters and invisible zero width characters3. Charac-
ters that do not require normalisation are self mapped. Character sequences that essentially
represents the same graphemes are normalised to a standard form.

Figure 4.3: Two alternate representations ofൻ at input is being mapped to the normalised
form at the output.

Specifically this FST converts chillus represented as the sequence base consonant,
virama (◌്), zwj to atomic forms as shown in Fig. 4.3. It also converts ന്റ /nṯa/ repre-
sented as the sequence [ൻ, virama (◌്), റ] to [ന, virama (◌്), റ]. Fig. 4.4 provides an
example indicating the state transitions happening in an FST that performs this. The word
final chillu grapheme represented as ന, ◌്, zwj is normalised to a common form of single
atomic character, ൻ, by passing through states from q2 , q3, q4 and q5. If the word were
already in normalised form, that character is self mapped as indicated in other transitions.
The procedural description is provided in Algorithm 2.

3Zero Width Joiner: https://en.wikipedia.org/wiki/Zero-width_joiner
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Figure 4.4: Normalisation of the word അവൻ, indicating the two possible input se-
quences generating the normalised output.

4.4.2 Word Boundary Tagging

This FST accepts all Malayalam characters. The token passed to Mlphon for analysis is
considered as a word. Tags in angle brackets <BoW> and <EoW> are added to indicate the
beginning of word and the end of word respectively by this FST and is returned to the
output. The procedural description is provided in Algorithm 2.

4.4.3 Syllable Boundary Tagging

Figure 4.5: Insertion of syllable tags, <BoS> <EoS> are indicated by transitions in green
colour. All other symbols are mapped to themselves. Word boundary tags inserted in
previous FST is also shown.

This FST accepts all Malayalam characters, along with word boundary tags. As discussed
in section I.4, some character sequences are invalid according to Malayalam script gram-
mar. The syllabifier FST checks for validity of character sequences to form syllables. An
invalid sequence of Malayalam characters will not find a path from the start state of this
FST to the end state and will summarily be rejected. On valid input strings, it inserts tags
- <BoS>, <EoS> - at appropriate positions to indicate the beginning and end of the sylla-
bles. The syllable boundary tags are essential for pronunciation analysis. This procedure
is explained in Algorithm 2. An example for the insertion of syllable tags is indicated in
Fig. 4.5.

4.4.4 Preliminary Phonemisation

This FST accepts valid sequence of Malayalam characters separated by word and syllable
boundary tags. The transitions defined by this FST maps every grapheme to phonemes
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Algorithm 2 Normalisation, Word Boundary Tagging, Syllable Boundary Tagging
1: procedure Normalisation
2: chillunorm_fst: chillu← base consonant+virama+zwj ▷ Define a named

FST for chillu normalisation
3: ntanorm_fst: ന+◌്+റ←ൻ+◌്+റ
4: return chillunorm_fst | ntanorm_fst ▷ It is the union of two

predefined FSTs
5: end procedure
6: procedureWord Boundary Tagging
7: return <BoW>+token+<EoW>← token ▷ Insert boundary tags to input word

token
8: end procedure
9: procedure Syllable boundary tagging
10: c_v← consonant + virama
11: syl_end = [anuswara, visarga, chillu] ▷ syl_end is a variable, that can take any

value in the list
12: ▷ Four types of character sequences that constitute a syllable is defined in the

following lines
13: Type 1← <BoW>+vowel+syl_end? ▷ ? indicates optionaity
14: Type 2← consonant+vowelsign?+syl_end?
15: Type 3← c_v * + consonant ▷ * indicates one or more occurence
16: Type 4← c_v ? + consonant + ◌ു? + virama + <EoW>
17: syllable← Type 1 | Type 2 | Type 3 | Type 4 ▷ A syllable is any of the 4 types
18: return <BoS> + syllable + <EoS>← syllable ▷ Insert boundary tags to syllables
19: end procedure
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as per tables in Appendix I I.1-I.3 along with phonetic or graphemic feature tags. The
preliminary mapping carried out by this FST will be modified by subsequent FSTs based
on contexts. The boundary tags are self mapped, so that they will be retained as such in
the output. An example of mapping the graphemesസ andമ to its phoneme with phonetic
features is described in Algorithm 3.

Algorithm 3 Preliminary Phonemisation
1: procedure Preliminary Phonemisation
2: g2p_1: s+<fricative>+<alveolar>←സ
3: g2p_2: m+<labial>+<nasal>← മ
4: ...
5: ... ▷ Basic G2P mappings
6: return g2p_1 || g2p_1 . . .
7: ▷ Composition of basic G2P mappings
8: end procedure

4.4.5 Inherent Vowel Addition

Algorithm 4 outlines the rules for adding the inherent vowel /a/ after consonant phonemes
in certain circumstances. Specifically, if the consonant phoneme is at the end of a syllable
position, or if it is followed by the anuswara, visarga, or a chillu, then the inherent vowel
/a/ is added.

4.4.6 Alveolar Conjuncts Remapping

The alveolar consonant clusters ന്റ /nṯa/ and റ്റ /ṯṯa/ are composed of the dental nasal
ന /n̪a/ and the alveolar trill റ /ra/, which have distinct pronunciations. Therefore, the
grapheme sequence ന /n̪a/ followed by a virama and റ /ra/ can be mapped to /nṯa/
instead of /n̪ra/. Similarly, the grapheme sequence റ /ra/ followed by a virama and റ
/ra/ can be mapped to /ṯṯa/ instead of /rra/. To achieve this unambiguous mapping, an
FST is used to check the context and remap these phonemes, as described in Algorithm 4.

4.4.7 Reph Sign Correction

If the final consonant in a cluster is the alveolar tapര /ɾa/, its pronunciation gets modified
to റ /ra/ depending on the preceding consonants. The ര /ɾa/ sound is retained only if
the preceding consonant of the cluster is voiced velar or dental plosive (ഗ /ga/ or ദ /d̪a/)
as described in Algorithm 4.
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Algorithm 4 Inherent Vowel Addition, Alveolar Conjuncts Remapping and Reph Sign
Correction
1: procedure Inherent Vowel Addition
2: pre_context = consonant+<tags> ▷ Define a variable that is a sequence of

consonants and tags
3: post_context = [<chil>, <anuswara>, <visarga>, <EoS>] ▷ Define a variable that

takes any value in the list
4: return [pre_context] a+<inherentvowel> [post_context] ← [pre_context] ɛ

[post_context]
5: end procedure ▷ <tags> - represent the sequence of phonetic feature tags
6: procedure Alveolar conjuncts remapping
7: tta_fst: [<BoS>,<virama>]+ṯ+<tags>+ṯ+<tags> ←

[<BoS>,<virama>]+r+<tags>+r+<tags>
8: nta_fst: <BoS>+n̪+<tags>+ṯ+<tags>← <BoS>+n+<tags>+r+<tags>
9: return tta_fst || nta_fst ▷ Composition of two FSTs
10: end procedure
11: procedure Reph Sign Correction
12: return [ɡ,d̪]+<tags>+<virama>+ɾ+<flapped>+<reph> ←

[ɡ,d̪]+<tags>+<virama>+r+<trill>+<reph>
13: end procedure

4.4.8 Schwa Addition (Samvruthokaram)

Samvruthokaram is a unique feature of Malayalam. Whenever there are consonants fol-
lowed by virama at word ends, a half-u sound of mid-central vowel schwa is added at
word end as described in Algorithm 5. This FST basically disambiguates the function of
virama. Loan words get adapted to native pronunciation by schwa addition at word ends.
eg: ബാങ്ക് /baːŋkə/ (bank)

4.4.9 Dental Nasal Disambiguation

The dental nasal grapheme ന /n̪a/, is pronounced as the alveolar nasal /na/ in the fol-
lowing contexts [119]:

1. When a morpheme medial syllable starts in ന and is followed by a vowel sound.

eg: ആന /aːna/ (elephant),ഗാനം /ɡaːnam/ (song),അനുജൻ /anuɟan/ (younger
brother)

2. When ന is the starting character in a consonant cluster followed by യ /ja/, വ /ʋa/
or മ /ma/.

eg: നന്മ /n̪anma/ (virtue),ന്യായം /njaːjam/ (justice),അേന്വഷണം /anʋeːʂaɳam/
(enquiry)

3. When ന is the second character in a consonant cluster, beginning with ക /ka/, ഘ
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/ɡʱa/, പ /pa/, മ /ma/, ശ /ʃa/ and സ /sa/.

eg: വിഘ്നം /ʋiɡʱnam/ (blockage) , സ്വപ്നം /sʋapnam/ (dream), ƃശ്നം /praʃnam/
(issue), േɎഹം /sneːɦam/ (love)

These three rules are implemented by identifying the context of appearance of ന in terms
of the surrounding consonants and syllable boundaries etc. as described in the Algorithm
5.

4.4.10 Labial Plosive Disambiguation

The unvoiced aspirated labial plosive grapheme ഫ /pʰa/ is used to represent the labio-
dental fricative /f/ in non-native words. On analysing a corpus of 100k most frequent
Malayalam words [124], only 6% of words that contained the letter ഫ were native. All
those native words had the letter ഫ, either preceded by the letter സ് or followed by ല.
This graphemic context is used as the parameter to determine the word origin and remap
fricative to plosive as described in Algorithm 5.

Algorithm 5 Schwa Addition, Dental Nasal Disambiguation, Labial Plosive Disambigua-
tion
1: procedure Schwa Addition
2: schwa_1: ə+<schwa>+<EoS>← u+<v_sign>+<virama>+<EoS> ▷ Define named

FSTs for schwa addition
3: schwa_2: ə+<schwa>+<EoS>← <virama>+<EoS>
4: return schwa_1 || schwa_2 ▷ Return the composition of two FSTs
5: end procedure
6: procedure Dental Nasal Disambiguation
7: nasalrule_1: <BoS>+n+<alveolar+<virama>+[j,ʋ,m] ←

<BoS>+n̪<dental+<virama>+[j,ʋ,m] ▷ Define named FSTs
8: nasalrule_2: <EoS>+<BoS>+n<alveolar>+[vowel] ←

<EoS>+<BoS>+n̪+<dental+[vowel]
9: nasalrule_3: [k,ɡʱ,p,m,ʃ,s]+<tags>+<virama>n<alveolar> ←

[k,ɡʱ,p,m,ʃ,s]+<tags>+<virama>n̪<dental>
10: return nasalrule_1 || nasalrule_2 || nasalrule_3 ▷ Return the

composition of three FSTs
11: end procedure
12: procedure Labial Plosive Disambiguation
13: fa_1: <BoW>+<BoS>+pʰ<plosive>+a+<EoS>+<EoW> ←

<BoW>+<BoS>+f<fricative>>+a+<EoS>+<EoW>
14: fa_2: s+<fricative>+<alveolar>+<virama>+pʰ+<plosive> ←

s+<fricative>+<alveolar>+<virama>+f<fricative>
15: fa_3: pʰ<plosive>+a+<EoS>+<BoS>+l← f<fricative>+a+<EoS>+<BoS>+l
16: return fa_1 || fa_2 || fa_3 ▷ Return the composition of three FSTs
17: end procedure
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4.4.11 Feature Tag Removal

The tag-removal FST removes the boundary tags and phonetic feature tags, by mapping
them to the null symbol ɛ. It will leave just the IPA symbols at the output.

4.5 Syllabifier FST

The composition of the series of FSTs from 4.4.1 to 4.4.3 results in a very useful module
that performs syllabification of Malayalam text. We compose these FSTs to get the Syl-
labifier FST and provide programmable access to it in the Mlphon Python library. This
module has interesting applications like developing subword level language modelling for
ASR as described in section 4.10. An illustration of this module acceptingMalayalam text
as input and generating output with syllable boundary tags is shown in Fig. 4.6.

Figure 4.6: Syllabifier performing syllabification on the word അവൾ. Boundary tags
for words and syllables are demonstrated.

If the token passed to the syllabifier is അവൾ /aʋaɭ/, it returns the syllabified string
<BoS>അ<EoS> <BoS>വൾ<EoS>. The Python interface to the FST for syllabification,
parses the boundary tags and returns the sequence of syllables.

4.6 Phoneme Analyser FST

Phoneme analyser FST is compiled as a composition of 10 FSTs described in sections
4.4.1 to 4.4.10 and indicated in Fig. 4.2 of Mlphon architecture. This FST accepts a
grapheme sequence as input and returns phoneme sequence, tagged with their phonetic
features. If the token അവൾ is passed to the phoneme analyser FST, it returns the string
<BoS>a<vowel><EoS><BoS>ʋ<approximant><labiodental>a <inherentvowel>ɭ<chil><EoS>
as illustrated in Fig. 4.7. This module can play crucial role in the context of linguistic
learning providing pronunciation information regarding the graphemes in a word.

Fig. 4.8 illustrates the state transitions and the insertion of tags in the phoneme analyser
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Figure 4.7: Phoneme analyser performing analysis on the word അവൾ. It returns the
sequence of phonemes in its pronunciation along with articulatory feature tags in angle
brackets.

FST when input tokens passed are: അവൾ /aʋaɭ/ and അവൻ /aʋan/. The Python inter-
face of Mlphon utilises this FST to analyse the Malayalam word and return the sequence
of phonemes and phonetic feature tags like place and manner of articulation.

Figure 4.8: Phoneme analyser FST, showcasing grapheme to phoneme conversion on the
word അവൾ.

4.7 G-P Converter FST

A transducer that takes in a grapheme sequence and gives out its pronunciation as IPA
in analysis mode and does the reverse in generate mode is the bidirectional grapheme-
phoneme converter FST. It is marked as G-P converter in Fig. 4.2. All the FSTs pre-
viously discussed are bidirectional. However the bidirectionality property is particularly
useful when there is need to convert graphemes to phonemes and vice-versa. Fig. 4.9
demonstrates an input and output symbol sequence of G-P4 Converter FST.

This FST, parses the words അവൾ /aʋaɭ/and അവൻ /aʋan/ in analysis mode as shown
in the Fig. 4.10 (i). When operated in generatemode, it converts a valid phoneme sequence
into graphemes. For example, in generate mode, it can parse the inputs aʋaɭ and aʋan as
shown in Fig. 4.10 (ii).

4We have used G-P and not G2P, as this FST is bidirectional and can perform P2G as well.
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Figure 4.9: G-P Converter FST, performing phoneme analysis on the word അവൾ.

Figure 4.10: G2P converter FST performing (i) grapheme to phoneme conversion on the
words അവൾ and അവൻ in analysis mode and (ii) phoneme to grapheme conversion on
aʋaɭ and aʋan in generate mode.
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4.8 The Python Library: Mlphon

The core functionalities of Mlphon is written in SFST and compiled into different finite
state transducers. SFST compiles the rules to form minimised FSTs which are very much
memory optimised [28]. The python binding of SFST provides access to these transducers
for high level programming. Mlphon Python library is very compact with 21 kB of total
file size.

One of the major motivation behind this work is to provide pronunciation lexicon for in-
tegrating with ASR and TTS applications. The pronunciation lexicon may require the
transcriptions to have delimiters between phonemes and/or syllables depending on the ap-
plication. The utility functions split_as_phonemes and split_as_syllables
provided with Mlphon python library can parse the phonemic analysis to a sequence
of phonemes or sequence of syllables separated by spaces. Additionally the function
phonemise accepts the delimiters defined by the user to separate phonemes and syl-
lables.

The Mlphon library also provides a command line utility for the tasks of syllabification,
phoneme analysis and conversion between graphemes and phonemes. See Listing 4.1 for
its usage and the list of optional arguments. The entire development process was guided
by a set of unit tests to ensure expected functionalities.

Listing 4.1: Command line utility for Mlphon library
mlphon [-h] [-s] [-a] [-p] [-pe string] [-se string] [-g] [-i INFILE]

[-o OUTFILE] [-v]

optional arguments:
-h, --help Show this help message and exit
-s, --syllablize Syllablize the input Malayalam string
-a, --analyse Phonetically analyse the input Malayalam string
-p, --tophoneme Transcribe the input Malayalam grapheme to phoneme

sequence
-pe string, --phoneme_end string

String to be inserted at end of phoneme
-se string, --syllable_end string

String to be inserted at end of syllable
-g, --tographeme Transcribe the input phoneme sequence to Malayalam

grapheme
-i INFILE, --input INFILE

Source of analysis data
-o OUTFILE, --output OUTFILE

Target of generated strings
-v, --verbose Print verbosely while processing
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4.9 Intrinsic Evaluation of Mlphon

Evaluating a script analysis toolkit like Mlphon is not straight forward due the absence
of any baseline ground truth linguistic resource. A gold standard manually annotated
data, which can serve as a reference is an important part of any quantifiable evaluation
[115]. A gold standard for G2P conversion contains a list of words annotated with their
true phoneme transcription. A gold standard for syllabifier is annotated as a sequence of
syllables. If a word has multiple possible annotations, all of those should be present in the
gold standard lexicon. Before we explain the evaluation, the following section presents the
design of gold standard lexicon. It follows a similar procedure and the number of entries as
in [115], used for creating a gold standard annotations for Turkish morphological analyser.

4.9.1 Design of Gold Standard Lexicon

The lexical entries in gold standard lexicon are chosen from the IndicNLP Corpus5 [124]
which is a list of words with frequency information. These words belong to a general
domain, web crawled Malayalam text corpus of 167.4 million tokens with 8.8 million
types.

The manually verified gold standard annotations were created semi-automatically. The
process began with the syllabification of 1000 of the most common words in this corpus
using Mlphon. It gave back a list of words, some of which had the proper syllabification
and others of which had none at all. A small portion of the words that couldn’t be syl-
labified were incorrectly spelled, which is typical of a corpus compiled from web crawls.
Misspelt words were manually corrected in the corpus and syllabified. All the syllabifica-
tions performed by Mlphon were also manually verified and corrected by expert linguists,
if found to be wrong. For the remaining words, which could not be syllabified, manual an-
notation was performed. Thus the gold standard lexicon for syllabification was obtained.

The gold standard lexicon for G2P mapping followed a similar procedure. Mlphon was
used to phoneme map the spelling corrected 1000 words. The returned results were manu-
ally corrected for deletion, substitution and insertion errors. The manual corrections were
performed, following all the rules and descriptions in the reference books [118,119]. The
removal of word final schwa (samvruthokaram) in proper nouns was suggested in a con-
sultation with linguists. The final annotations on the gold standard lexicon were approved
by them.

The lexical entries in the gold standard lexicon constitutes 26% of the total number of
tokens in the said corpus according to the computation shown in (4.9.1). The frequency
profile in Fig. 4.11 illustrates this. The coverage of tokens in the gold standard lexicon

5https://github.com/AI4Bharat/indicnlp_corpus
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Figure 4.11: The lexical entries of gold standard lexicon is chosen from the most frequent
thousand words from the IndicNLP corpus [124] such that these words cover 26% of the
167.4 million tokens present in this corpus.

Figure 4.12: Distribution of word types in gold standard lexicon
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Figure 4.13: Phoneme diversity analysis in gold standard lexicon

with respect to the corpus is computed as:

Coverage =
∑

Frequency of top 1000 tokens× 100
Total token count in corpus

≈ 44321494× 100
167.4 million

≈ 26%

(4.9.1)

The gold standard lexicon covers many regular words, loan words, proper nouns and ab-
breviations as per the distribution illustrated in Fig. 4.12.

A phoneme diversity analysis of the gold standard lexicon was performed and plotted
in Fig. 4.13. The relative frequency of phonemes in gold standard lexicon follows the
same pattern as previously reported values of phoneme diversity in Malayalam speech
corpora [86].

4.9.2 Syllabification

The syllabification results of Mlphon is evaluated on the gold standard reference. Even
though the syllabification rules are deterministic there has been few deletion errors as
illustrated in the Table 4.2 and analysed in detail in section 4.9.2.
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Table 4.2: Comparing the syllabification provided by Mlphon with gold standard
reference.

Word Reference Mlphon Error
ഈ ഈ. ഈ. -
ഉന്നത ഉ.ന്ന.ത. ഉ.ന്ന.ത. -
എന്ന എ.ന്ന. എ.ന്ന. -
ഒരു ഒ.രു. ഒ.രു. -
കേഫ ക.േഫ. ക.േഫ. -
േതാമസ് േതാ.മ.സ്. േതാ.മ.സ്. -
നമ്പർ ന.മ്പർ. ന.മ്പർ. -
ഫലം ഫ.ലം. ഫ.ലം. -
േഫാേട്ടാ േഫാ.േട്ടാ. േഫാ.േട്ടാ. -
സിഐഡി സി.ഐ.ഡി. Deletion

Syllabification Accuracy

Accuracy is defined as a ratio between the correctly classified samples to the total number
of samples. Precision represents the proportion of positive samples that were correctly
classified to the total number of positive predicted samples. Recall of a classifier rep-
resents the positive correctly classified samples to the total number of positive samples.
The harmonic mean of precision and recall is the F1 score [125]. The evaluation metrics
averaged over all syllables and represented as percentage has the values as listed here.

Accuracy : 99%
Precision : 99%
Recall : 99%
F1 Score : 99%

Syllable Error Rate

Wemeasure the syllable error rate (SER) based on the number of insertions, deletions, and
substitutions for every syllable present in the gold standard lexicon.

Total Words: 1000
Total Syllables: 2891
Syllables deleted: 18
Syllables Inserted: 0
Syllables Substituted: 0
Syllables Error Rate: 0.62%

Syllable Error Analysis on Different Word Types

Among the words in gold standard lexicon, all syllabification errors were concentrated
in words that are English abbreviations directly transliterated to Malayalam without any
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delimiters in between. Such words have violated the script grammar of Malayalam with
vowels in word medial positions. Some Arabic loan words are among the other valid
words that defy script grammar and cannot be syllabified by Mlphon.

Figure 4.14: Distribution of syllabification errors in different word types in gold standard
lexicon

When the word level syllabification errors were examined, 23% of the abbreviations were
incorrectly syllabified. This makes up about 0.6% of words in the entire gold standard
lexicon. It is illustrated in Fig. 4.14.

4.9.3 Grapheme to Phoneme Conversion

The G2P conversion of Mlphon is evaluated, comparing its output with gold standard
phoneme transcriptions. Evaluation involves phoneme level alignment of the transcription
provided by Mlphon with that of the gold standard lexicon and counting the number of
insertions, deletions and substitutions. We use the toolkit Kaldialign6 to perform the same.
A sample of gold standard transcriptions with the phoneme sequence output provided by
Mlphon is shown in Table 4.3.

G2P Conversion Accuracy

Comparing the true phonemes in gold standard lexicons to the transcription provided by
Mlphon, we present the phoneme transcription accuracy in the form of a confusion matrix

6Kaldialign library https://pypi.org/project/kaldialign/
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Table 4.3: Comparing the G2P transcription provided by Mlphon with gold standard ref-
erence.

Word Reference Mlphon Error
ഈ iː iː -
ഉന്നത u n n a t ̪ a u n n a t ̪ a -
എന്ന e n̪ n̪ a e n̪ n̪ a -
ഒരു o ɾ u o ɾ u -
കേഫ k a f eː k a f eː -
േതാമസ് t ̪ oː m a s t ̪ oː m a s ə Insertion
നമ്പർ n a m p a r n̪ a m p a r Substitution
ഫലം pʰ a l a m pʰ a l a m -
േഫാേട്ടാ f oː ʈ ʈ oː f oː ʈ ʈ oː -
സിഐഡി s i ai ̯ ɖ i s i ai ̯ ɖ i -

in Fig. 4.15. For all phonemes other than those listed in Table 4.4, the accuracy, precision,
recall, and F1 scores were computed to be 100%.

Table 4.4: Precision, Recall and F1 Scores of phoneme transcription by Mlphon. For all
other phonemes, these metrics are evaluated to be 100%.

Phoneme Precision (%) Recall (%) F1 Score (%)
n 100 84 91
n̪ 92 100 96
ə 93 100 97

Except for the ന disambiguation rules, all contextual rule sets operate flawlessly without
a single error when evaluated on gold standard lexicon. The unintentional insertion of
samvruthokaram into non native proper names and abbreviations transliterated from En-
glish was the cause of all the insertion errors. Insertion is mapped to the empty symbol
‘#’ in the gold standard transcription. The top row of the Fig.4.15 shows insertion of ‘ə’.
Since the mostly ambiguous grapheme ഫ was G2P mapped with 100% accuracy on the
gold standard lexicon, we increased the evaluation space to include 100k commonMalay-
alam words. According to the confusion matrix in Fig. 4.16, the transcription accuracy of
ഫ dropped to 99% in the expanded evaluation set.

The overall evaluation metrics averaged over all phonemes in the gold standard lexicon
has the values in percentage as listed here.

Accuracy : 99%
Precision : 98%
Recall : 98%
F1 Score : 98%
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Figure 4.15: Confusion matrix comparing Mlphon transcription with gold standard tran-
scription. The values are normalised and represented as percentage.
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Figure 4.16: In an evaluation space of 100k tokens, we computed the accuracy of tran-
scribing ഫ. The two possible pronunciations /f/ and /pʰ/ were accurately identified in
more than 99% of the cases as shown in this confusion matrix.

Phoneme Error Rate

As an alternate metric to measure the phoneme transcription quality, we evaluate the
phoneme error rate (PER). It is computed based on the number of insertions, deletions,
and substitutions for every phoneme present in the gold standard lexicon.

Total Words: 1000
Total Phonemes: 6755
Phonemes deleted: 0
Phonemes Inserted: 12
Phonemes Substituted: 25
Phoneme Error Rate = 0.55%

G2P Error Analysis on Different Word Types

We performed a detailed analysis of G2P errors on different types of words in the gold
standard lexicon. 1.4% of regular words and 1.3% of loan words had substitution errors.
About 23% of proper nouns and 15% of abbreviations had insertion errors due to unin-
tended samvruthokaram at word ends. All the erroneous words account for 2.6% of the
total words in the gold standard lexicon. It is illustrated in Fig. 4.17.

The correction of substitution and insertion errors involve morphologically analysing the
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Figure 4.17: Distribution of G2P errors in different word types in gold standard lexicon.

words, which is currently beyond the scope of this work. Even with these limitations, the
PER on the gold standard lexicon that covers about 26% of words from 167 million tokens
is only 0.55%

4.10 Applications of Mlphon

In this section we describe some potential application ofMlphon. The applications include
phonemic diversity analysis of speech corpora, assisted pronunciation learning, text sanity
check and correction and creation of large vocabulary pronunciation lexicon. These are
described in the following subsections.

4.10.1 Phonemic Diversity Analysis of Speech Corpora

Speech corpus used in developing ASR and TTS systems has to be phonemically balanced
and rich to ensure proper acoustic modelling [126]. We transcribed the speech corpus tran-
script to phonemised text using Mlphon. The phoneme diversity of the resulting text is
then analysed. The graph in Fig. 4.18 illustrates the phonemic richness of the corpora used
in the ASR experiments described in chapter 5. The phoneme with the highest number of
appearances is the inherent vowel /a/, followed by the vowel /i/ in all the corpora under
consideration. The most frequent consonant phoneme is the dental plosive /t/̪ in Indic
TTS [84] corpus while it is /n̪/ in OpenSLR [85] and Festvox IIITH [83] corpora. The
statistical analysis of phonemes could potentially be used to design corpora with phone-
mically balanced content [127].
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Figure 4.18: Phonemic diversity analysis of various speech corpora used in ASR Exper-
iments. It indicates relative frequency of each phoneme.

4.10.2 Assisted Pronunciation Learning

It is important for a new script learner to understand the pronunciations correctly and get a
comprehensive idea of phonetic features of the text. Mlphon provides phonetic feature tags
corresponding to every phoneme. A web interface7 has been developed for user friendly
access to Mlphon features. As demonstrated in Fig. 4.19, the graphical user interface
accepts a word in Malayalam script and provides syllabification, phonetic analysis and
IPA transcription. This interface can aid even a non-native linguistic researcher to analyse
and understand the nuances of Malayalam script and pronunciation.

4.10.3 Text Sanity Check and Correction

Large body of text (web crawled, crowd sourced, curated, transcribed or annotated) is the
backbone of training and testing modern NLP solutions of large language models, part of
speech taggers, text to speech and speech to text systems. Mlphon can perform a script
grammar check on the text corpora under consideration and give pointers for manually
correcting possibly corruptMalayalam text content due to presence of invisible characters,
foreign scripts, wrong script order etc.

The Table 4.5 lists the number of tokens flagged as errors after script grammar check
using Mlphon in various Malayalam speech corpora. These flagged errors were corrected
before feeding them for training in ASR experiments explained in chapter 5. However,
errors which do not violate the script grammar rules can not be detected by Mlphon.

7Mlphon Web Interface https://phon.smc.org.in/
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Figure 4.19: Web interface for Mlphon. Features of syllabification, phonetic analysis and
IPA transcription are shown.

Table 4.5: Number of word tokens flagged as invalid by Mlphon on different transcribed
speech corpus and corresponding error rates.

Speech Corpora Error Count Token Error Rate
Indic TTS [84] 1013 1.2%
OpenSLR [85] 83 0.3%
Festvox IIITH [83] 22 0.3%
Indic Speech [128] 4337 4.3%
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4.10.4 Creation of Large Vocabulary Pronunciation Lexicon

One of the potential usages of Mlphon is its effectiveness in creating large vocabulary
pronunciation lexicon efficiently. A detailed discussion on the creation of such a resource
for Malayalam is discussed in Chapter 5 along with a comparison with similar tools qual-
itatively as well as quantitatively.

4.11 Summary

In this chapter, we presented a FST based G2P conversion system for Malayalam, called
Mlphon. The system consists of three FSTs: a syllabifier FST, a phoneme analyser FST,
and a G2P converter FST. We also described the various normalisation, tagging, and cor-
rection rules used in Mlphon to handle complex phonological processes in Malayalam,
such as inherent vowel addition, alveolar conjuncts remapping, and dental nasal disam-
biguation.

Our intrinsic evaluation of Mlphon showed that the system achieved an accuracy of 99%
in syllabification and G2P conversion. We also discussed several potential applications of
Mlphon, such as creating large vocabulary pronunciation lexicons, assisted pronunciation
learning, and phonemic diversity analysis of speech corpora.

Overall, the development of Mlphon has contributed to the advancement of NLP for
Malayalam, and we believe that it can be further improved and expanded in the future
to better serve the needs of researchers, developers, and users in the field.
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Chapter 5

Large Vocabulary Pronunciation
Lexicons for Malayalam ASR

5.1 Introduction

This chapter discusses the development of an LVCSR system for Malayalam using the
pipeline approach, which includes building a large vocabulary pronunciation lexicon. A
comprehensive and robust PL should be able to handle the language’s complex phonology.
To achieve this, we utilise an automated approach using Mlphon, an FST-based toolkit
developed as part of this research and described in detail in Chapter 4.

Using Mlphon we publish a large vocabulary pronunciation lexicon for Malayalam in
both phonemized and syllabified forms. It contains more than 100,000 words covering
different categories of words. It is the first of its kind resource available in Malayalam
language. To evaluate the effectiveness of the PL created using Mlphon, we compare it
with those created using other automated tools such as Unified Parser and Espeak. We
perform a qualitative comparative analysis of the PL generated by different tools, while
also evaluating the word processing speed of each.

To build the Malayalam LVCSR model, we combine the lexicons generated using auto-
mated tools with a statistical LM and a hybrid DNN-HMM acoustic model. Additionally,
we conduct a comparative analysis of the effectiveness of the pronunciation lexicon cre-
ated using Mlphon on the LVCSR task.

5.2 Large Vocabulary Pronunciation Lexicons

In the development of ASR and TTS systems, pre-built PLs are a crucial resource available
for numerous languages, as mentioned in section 2.3.2. However, in the case of Malay-
alam, aside frommanually or semi-automatically created small pronunciation lexicons for
specific experiments, as discussed in section 2.7, there are no openly available pronunci-
ation lexicons. To address this issue, we present a large vocabulary pronunciation lexicon
for Malayalam, created using Mlphon, which is now publicly available.

The published lexicons consist of different categories of words as described in Table 5.1.
The tokens in common words pronunciation lexicon are extracted from a general domain
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Table 5.1: Pronunciation lexicons of different word categories.

Category Number of lexi-
cal entries

Remarks

Common
words

100000 Most commonly used 100k Malayalam word forms.
They are arranged in the order of decreasing fre-
quency.

Verbs 3895 Malayalam verbs in the citation form arranged in al-
phabetic order

Nouns 59763 Malayalam nouns arranged in alphabetic order
Proper
nouns

6751 Common Malayalam person names, place names and
brand names arranged in alphabetic order

Foreign
words

4350 Sanskrit and English borrowed words commonly used
in Malayalam arranged in alphabetic order

Table 5.2: An excerpt from pronunciation lexicons.

Lexicon Word Phonemised
transcription

Syllabified tran-
scription

Co
m
m
on
wo
rd
s ഒരു o ɾ uː o ɾu

ഈ iː iː
എന്ന e n̪ n̪ a e n̪n̪a
തെന്ന t ̪ a n̪ n̪ e ta̪ n̪n̪e
പറë p a r a ɲ ɲ u pa ra ɲɲu
എന്നാൽ e n n aː l e nnaːl
എന്നാൽ e n̪ n̪ aː l e n̪n̪aːl

Ve
rb
s അകലുക a k a l u k aː a ka lu ka

അäക a ɲ t͡ʃ u k a a ɲt͡ʃu ka
അട�ക a ʈ a k k u k a a ʈa kku ka

No
un
s

അടക്ക് a ʈ a k k ə a ʈa kkə
അടങ്കൽ a ʈ a ŋ k a l a ʈa ŋkal
അടÎതുറ a ʈ a t͡ʃ t͡ʃ u t ̪ u r a a ʈa t͡ʃt͡ʃu tu̪ ra
അടÎവാറ്റി a ʈ a t͡ʃ t͡ʃ u ʋ aː ṯ

ṯ i
a ʈa t͡ʃt͡ʃu ʋaː ṯṯi

Pr
op
er
No
un
s അക്ബർ a k b a r a kbar

അക്ഷയ a k ʂ a j a a kʂa ja
അക്ഷര a k ʂ a ɾ a a kʂa ɾa
അഖില a kʰ i l a a kʰi la
അഖിലൻ a kʰ i l a n a kʰi lan

Lo
an
wo
rd
s അക്കാഡമി a k k aː ɖ a m i a kkaː ɖa mi

അക്കൗണ്ട് a k k au̯ ɳ ʈ ə a kkau̯ ɳʈə
അേക്വറിയം a k ʋ eː r i j a m a kʋeː ri jam
അങ്കിൾ a ŋ k i ɭ a ŋkiɭ
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text corpus of 167 million types covering the fields of business, entertainment, sports,
technology etc. as described in Indic NLP corpus [124]. The rest of the categories are cu-
rated word lists from the Malayalam morphology analyser, Mlmorph [10]. Since Mlphon
fails to syllabify and phonememap abbreviations that contain word medial vowels, a work
around script has been written to split such words at the position of vowels and obtain the
right G2P results.

These pronunciation lexicons are published in two separate formats; one with phoneme
level transcription where pronunciation is described as a sequence of phonemes and the
other with syllable level transcription where pronunciation is described as a sequence of
syllables. The sequences are separated with a blank space in between. The lexicons are
published in a two column, tab separated values (tsv) format. Multiple pronunciations of
the same word are provided wherever applicable. Table 5.2 gives an excerpt from different
categories of pronunciation lexicons. These lexicons are publicly available for download
and usage under CC-BY-SA License 1.

The development of a pronunciation lexicon for use in speech tasks like ASR is one of
the crucial applications of a G2P conversion tool. Among all the tools previously reported
in literature, only Unified Parser and Espeak are freely available to create Malayalam
pronunciation lexicons on demand, with delimiters between phonemes. We build lexicons
with Unified Parser and Espeak in order to compare and contrast Mlphon’s performance
with those tools.

Each of the automated tools used to create the pronunciation lexicon, namely Unified
Parser, Mlphon, and Espeak, employ different phoneme alphabets and have different G2P
mapping criteria. While Unified Parser and Mlphon focus on converting graphemes into
phonemes, Espeak generates allophones of phonemes. This means that a single phoneme
may be represented by several phonetic symbols in Espeak, depending on its position
within a word. In the lexicons created for our ASR experiments, Mlphon has a set of 56
phonemes, whereas Unified Parser and Espeak have 61 and 62 phonemes, respectively.
Unified Parser has a higher phoneme count because it differentiates phonemes if they come
from different graphemes. In contrast to the other two tools, Espeak uses distinct phonetic
alphabets for allophonic variations, giving it a higher phoneme count. Consequently, it is
impossible to compare the output produced by these tools in a straightforward, direct, and
automated manner.

Sample entries from the pronunciation lexicons created using these tools, are presented in
Table 5.3. On analysing these lexicons, following observations can be made:

1. Unified Parser ignores all other contextual rules discussed in appendix I, except
inherent vowel deletion in the context of virama and other signs.

1https://gitlab.com/kavyamanohar/malayalam-phonetic-lexicon
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2. Espeak implements most of the contextual rules discussed in appendix I, except reph
sign, dental nasal and labial plosive disambiguation.

3. Espeak additionally considers allophonic variations due to co-articulation effects.
Mlphon does not consider this because this is not a phonemic change.

The carefully crafted pronunciation rules in Mlphon has close to perfect G2P mappings. It
makes Mlphon suitable for the creation pronunciation lexicons and for linguistic learning
purposes. The unattended contextual rules make Unified Parser less suitable for such
tasks. Espeak is suitable to identify allophonic variations. The impact of these lexicons
on ASR task is experimentally analysed and presented in this chapter.

Table 5.3: A qualitative linguistic comparison between the lexicons produced by Mlphon
and freely accessible automated tools

No. Word Unified
Parser

Espeak Mlphon Remarks

1 കല്പന k a l p a n a k ɐ l b ə n ɐ k a l p a n a The third phoneme produced by
Unified Parser is different in
rows 1 and 2, which should

2 കൽപനk a lw p a n a k ɐ l b ə n ɐ k a l p a n a have been same as produced by
Espeak and Mlphon

3 അവന് a w a n ɐ v ə n ɨ a ʋ a n ə Espeak and Mlphon en-
sures word end vowel
(Samvruthokaram) is rightly
inserted, corresponding to vi-
rama at word ends. But Unified
Parser does not handle this.

4 നിനക്ക് n i n a k k n i n ə kː ɨ n̪ i n a k k ə Only Mlphon disambiguates the
dental (n̪ ) and alveolar nasal (n)
pronunciations of ന.

5 കറന്റ് k a rx a n rx k ɐ r ə n d ɨ k a r a n ṯ ə Unified Parser fails to contex-
tually change the pronunciation
of റ, while Espeak and Mlphon
handles this correctly

Comparison of Processing Speed

Word processing speed (WPS) is one indicator of a G2P algorithm’s effectiveness [39].
TheWPS for the applications, Unified Parser [55], Espeak2 and the proposed tool Mlphon
was estimated by measuring the time required to convert the 100k common words in
Malayalam listed in Indic NLP corpus [124] as per (5.2.1). Mlphon with a WPS of 69142
words per second is at least ten times faster than Espeak and 1000 times faster than Uni-
fied Parser as per the values computed and listed in Table 5.4. This faster processing

2Using Phonemizer library https://pypi.org/project/phonemizer/
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speed of Mlphon makes it particularly suitable for integration with other real time NLP
applications.

WPS = 100000 [words]
Processing time [minutes] (5.2.1)

The reason for the time efficiency while using Mlphon can be attributed to the computa-
tionally fast determinised and minimised FSTs [28], upon which Mlphon is built. Unified
Parser is prohibitively slow due to the additional memory management requirement3.The
measurement of G2P conversion speedwas performed on a PCworkstationwith 2×AMD
CPU @ 2.250 GHz and 4 GB of RAM.

Table 5.4: Comparison of the word processing speed of the proposed tool Mlphon with
other openly available tools.

Tool WPS (words/minute)
Unified Parser 42

Espeak 6722
Mlphon 69142

5.3 Experimental Setup for Malayalam LVCSR

With reference to the pipeline architecture of ASR decoder described in Fig. 2.1, we need
to build an AM, LM and a PL and compose them into a WFST graph to get the LVCSR
model for Malayalam. The acoustic model is trained from an annotated speech corpus
and the language model is trained from a huge corpus of text. We have a ready to use PL,
which we will adapt for our training speech corpus.

5.3.1 Dataset

We rely on publicly available open licensed read speech datasets [83–85] for Malayalam.
Every audio recording in the dataset is associated with a textual transcript in Malay-
alam script. We divide the available speech into train and test datasets, ensuring non-
overlapping speakers and speech transcripts.The train datasets described in Table 5.5 are
combined to get approximately 19 hours of audio for acoustic modelling.

To create the language model, we use the sentences from the speech transcripts and com-
bine it with the curated collection of text corpus published by SMC [106]. From this, every
sentence that appeared in our test dataset is explicitly removed to prevent over-fitting. The

3Solution for segmentation fault error suggested in the discussion forum https://groups.
google.com/g/indictts/c/YUhHfr3Ysug/m/xcflHJTkAQAJ
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Table 5.5: Details of Speech data sets used in our experiments.

Name Corpus #Speakers #Utterances Duration
(minutes)

1 Indic TTS, IITM [84]- Train 2 8601 838
2 Open SLR Malayalam [85] - Train 37 3346 287
T1 Open SLR Malayalam [85] - Test 7 679 48
T2 Festvox IIITH [83] - Test 1 1000 98

resulting text corpus contains 205k unique sentences, 1325k word types, and 356k unique
word tokens.

5.3.2 Language Model

Languagemodel predicts the probability of a word to follow a sequence of previous words.
Apart from the transcripts of speech which amount to 7924 unique sentences, we have uti-
lized the curated collection of text corpus published by SMC [106] amounting to 205k
unique sentences for language modelling. After combining these, we explicitly removed
all sentences that are present in our test audio transcripts. Bigram language model is pre-
pared on this language modelling corpus using SRILM toolkit [129]. Back-off probabili-
ties are estimated using Kneser-Ney algorithm to avoid the zero-probable word sequence
problem [27].

5.3.3 Pronunciation Lexicon

The entries in the pronunciation lexicon is chosen from the list of words with at least four
occurrence in the sentence corpora used for language modelling, ensuring all words in the
training speech transcripts are present in the lexicon. The pronunciation lexicon for the
ASR are prepared using Unified Parser, Espeak and Mlphon. Due to the differences in
grapheme to phoneme mapping approach in different G2P tools,there are differences in
the phoneme label set for each of these PLs as shown in Table 5.6.

Table 5.6: Comparison of pronunciation lexicons created by different automated tools

Word Pronunciations
Mlphon Unified Parser Espeak

അകം a k a m a k a q ɐ ɡ ə m
അകലം a k a l a m a k a l a q ɐ ɡ ə l ə m
അവൻ a ʋ a n a w a nn ɐ v ə n
അവന് a ʋ a n ə a w a n ɐ v ə n ɨ
എന്നാൽ en̪ n̪ aː l e n n aa lw ʲ e n n aː l
എന്നാൽ e n n aː l - -

In the lexicons with a vocabulary of 69k words, Mlphon has a set of 56 phonemes, whereas
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Unified Parser and Espeak have 61 and 62 phonemes, respectively. Unified Parser has
a higher phoneme count because it differentiates phonemes if they come from different
graphemes. In contrast to the other two tools, Espeak uses distinct phonetic alphabets
for allophonic variations, giving it a higher phoneme count. Since acoustic modelling is
to learn the relationship between the acoustic features and the phoneme label set, corre-
sponding to every PL, separate acoustic modelling has to be carried out.

5.3.4 Acoustic Modelling

Kaldi toolkit [3] is used for our experiments on ASR. We split the openly available tran-
scribed Malayalam speech corpora from various sources [83–85], into training and test
datasets, ensuring non-overlapping speakers and speech transcripts as listed in Table 5.5.
The series of steps involved in training a hybrid DNN-HMMacoustic model with LF-MMI
training criteria is described here.

Preprocessing

The speech sampling rates of different sources are converted to a sampling frequency of
16 kHz prior to feature extraction. As the acoustic features, we have used 13 dimensional
MFCCs with delta and double delta coefficients computed over a window (Hamming) size
of 25 ms with an overlap of 10 ms. To reduce the effects of environmental influences on
the cepstral features, a cepstral mean and variance normalisation (CMVN) operation is
performed on the MFCC feature vectors before training and testing [130].

Context Independent (Monophone) GMM-HMM Training

Monophone acoustic model is a simple GMM-HMM system trained on speech data by ex-
tracting 13 MFCCs and their first-order and second-order derivatives from 25 ms speech
frames at 10ms intervals. Each phoneme is modelled by a single HMM with three states.
The parameters of GMM-HMM (number of Gaussians, means and covariences of Gaus-
sians, transition probabilities between states) as shown in Fig. 2.3, are estimated by iter-
ative Baum-Welch algorithm which belongs to the category of expectation maximisation
(EM) algorithms [30].

In each iteration, the Baum-Welch algorithm re-estimates the parameters of the GMM-
HMMmodel, improving itself over previous iterations. If we have the speech, associated
transcript and a pronunciation for every word in the transcript, then a flat-start model train-
ing starts with the assumption that each phoneme occupies an equal audio space. With this
initial guess of flat start alignment, the GMM-HMM parameters are estimated. Starting
with one Gaussian per state, we target for a maximum of 1000 Gaussians distributed over
all phoneme states.
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Re-alignment being an expensive operation, it is performed for every iteration only for
the initial 10 iterations; after which re-alignment is performed once for every 2 iterations
for the next 10 iterations; followed by once every 3 iteration for the remaining iterations.
The total number of iterations is set to 40. We call this the context independent GMM-
HMM (CI GMM-HMM) model. After 40 iterations, the resulting alignment is called the
monophone alignment and is passed on as input to the next acoustic modelling.

Context Dependent (Triphone) GMM-HMM Training

The acoustic realisation of a phoneme depends largely on its context of occurrence. If we
use a single phoneme label to model all the different realisations, the final model would
average out all the differences, ultimately reducing the model quality. An alternate ap-
proach is to model every phoneme with every possible left and right contexts. If there
are N unique phonemes, then there would by N3 context dependent (CD) phonemes or
triphones. In any real speech corpora, all the possible triphones may not be present to train
an acoustic model.

A practically feasible middle path is to cluster all similar sounding HMM states together.
This is done using phonetic decision trees [20]. A phonetic decision tree groups these tri-
phones into a smaller amount of acoustically distinct units, thereby reducing the number of
parameters and making the problem computationally feasible. Starting with single Gaus-
sian per leaf node (tied senone state), we train the context dependent triphone model to get
a maximum of 150 leaf nodes and a total of 12000 Gaussians in 35 iterations with Baum-
Welch algorithm using MFCC and its derivatives. Re-alignment is done after every 10
iterations. These hyper-parameters were experimentally determined to get the best WER
on the test dataset. Once the final context dependent GMM-HMM (CD GMM-HMM)
model is trained, the entire corpus is re-aligned to get triphone alignments which are then
passed on to the next training stage.

CD GMM-HMM (Triphone) Training with LDA Features and MLLT Transform

An improvement over simple CD GMM-HMM modelling would be to perform feature
based linear discriminant analysis (LDA) and model based maximum likelihood linear
transformation (MLLT) adaptation. Linear discriminant analysis (LDA) reduces dimen-
sionality and hence compresses the data, and improves inter class separability of phonemes
[131]. During this process, 13-dimensional MFCC vectors across 5 frames are spliced
resulting in 65-dimensional feature vectors. Then LDA is applied to reduce the vector
dimensionality to 40 and increase inter class phoneme variability. MLLT is a transforma-
tion on the GMM-HMMmodel parameters such that it increases the likelihood of training
data by performing similar transforms on similar phoneme classes during training and
testing [132].
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While training LDA-MLLT triphone model, the number of Gaussians is set to 17000 and
number of leaves are set to a maximum of 400. The training is done for 35 iterations
and alignments are updated every 10 iterations. The resulting alignments improve ASR
performance and this is used to bootstrap the next triphone training.

CD GMM-HMM (Triphone) Training with fMLLR Features

A speaker adaptive training (SAT) model is trained by applying speaker specific feature
space maximum likelihood linear regression (fMLLR) adaptation on the top of LDA-
MLLT transforms [133]. It suppresses speaker variability and hence can build speaker
adapted models. To train SAT-fMLLR triphone model, the number of Gaussians is set to
18000 and number of leaves are set to a maximum of 550. The training is done for 35 iter-
ations and alignments are updated every 10 iterations. The resulting alignments improve
ASR performance and this is used to bootstrap the TDNN training.

CD DNN-HMM (TDNN) Training

This acoustic model is trained to get the maximum posterior likelihood of the tied CD
senone states, given an observation vector. Our implementation of this acoustic model is
based on a time delay neural network (TDNN) [23] architecture in Kaldi toolkit [3]. It
is trained using frame-level state labelling obtained from CD GMM-HMM SAT acoustic
model. State labels are used as targets to train the TDNN acoustic model.

Acoustic features used in TDNN training are: (i) 40-dimensional high-resolution MFCCs
extracted from frames of 25 ms length and 10 ms shift and (ii) 100-dimensional i-vectors
[19] computed from chunks of 150 consecutive frames. Three consecutiveMFCCs vectors
and the i-vector corresponding to a chunk are concatenated, obtaining a 220-dimensional
feature vector for a frame. i-vectors are a kind of feature containing speaker characteris-
tic information and they have a role in improving the system’s adaptation to the specific
speech of a speaker [4]. We have used audio data augmentation by speed and volume per-
turbation before i-vector extraction [134]. When we provide i-vectors at each time-step
to a TDNN classifier, we are effectively providing this speaker-specific information so
that the system can learn regularities in different kinds of voices, and adjust its phoneme
classification depending on them. LDA is applied on this feature vector to decorrelate the
components, while the dimensionality is preserved. Consequently, the TDNN input is a
220-dimensional feature vector.

There are 16 layers of TDNNs, each working with different temporal contexts. The TDNN
layers 2 to 4 process the input vectors at time indices t-1, t, t+1. The TDNN layer 6 to 13
process the input vectors at time indices t-3, t, t+3. All other layers use no temporal context
information. The layers 2 to 13 use factored form of TDNN with subsampled connection
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between layers. Each layer is a succession of typical DNN operations, such as affine
transforms, ReLU activations and batch normalisations. This acoustic model is trained
simultaneously with two discriminative training criteria, one based on cross entropy loss
and the other based on LF-MMI. This is effectively a multi-task learning scenario where
training is performed efficiently on a GPU, by replacing word level LM with phone level
LM [26]. The dimension of the output layer is determined automatically, based on the
number of tied phoneme states. The model is trained for 5 epochs where every layer uses
L2 normalisation to avoid over-fitting. The model is trained on a single NVIDIA Tesla T4
GPU 4.

5.3.5 Decoding Lattice

The decoding graph is a WFST (HCLG.fst) that is composed of the weighted FSTs cor-
responding to the context dependent HMMacousticmodel, lexical model and the grammar
model. The final lattice creation for every utterance happens by composing the weighted
FSA for that utterance (U ) with the HCLG.fst [17, 29].

5.4 Result Analysis

All the ASR models use the same bigram language model, with different acoustic models
and pronunciation lexicons. The performance of ASR models are evaluated in terms of
WER. WER is computed based on the number of words inserted, deleted and substituted
in the predicted speech transcript when compared to the ground truth transcript.

WER = (Insertions + Deletions + Substitutions) × 100
(Number of words)

(5.4.1)

The out of vocabulary (OOV) rates and dataset characteristics have a significant impact
on the ASR results. It is also largely influenced by the domain of text used in language
modelling and OOV rates. The OOV rate is the proportion of words in a given speech
sample that are not present in the vocabulary of the ASR lexicon. OOV words can not
be recognised by the word based ASR decoder. We evaluate our ASR models on two
different test datasets namely, T1 (14% OOV) and T2 (1% OOV) derived respectively
from OpenSLR [85] and Festvox IIITH [83] corpora that contains 48 and 98 minutes each
of speech data. The test data set with lower OOV rate performs better as expected. The
resulting WER produced by the lexicons created using all tools under investigation are
reported in Table 5.7. The best WERs on T1 and T2 are 34.6% and 9.6% respectively, and
they are both given by Mlphon lexicon.

4https://gitlab.com/kavyamanohar/asr-malayalam
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Table 5.7: Comparing WER (%) obtained in Malayalam ASR experiments with lexicons
created using the proposed tool, Mlphon, and other openly available tools.

T1 (14% OOV) T2 (1% OOV)

Acoustic Models L
ex
ic
on

C
re
at
or

U
ni
fie
d
Pa

rs
er

Es
pe
ak

M
lp
ho
n

U
ni
fie
d
Pa

rs
er

Es
pe
ak

M
lp
ho
n

Monophone (MFCC) 60.9 58.4 58.7 25.0 20.9 21.8
Triphone (MFCC) 49.9 48.3 47.4 21.0 17.5 17.1

Triphone (LDA+MLLT) 43.8 41.2 43.7 18.4 14.3 13.9
Triphone (fMMLR) 43.6 41.2 41.0 14.3 11.1 10.6

TDNN (MFCC+ivectors) 35.7 34.9 34.6 10.7 9.7 9.6

These results can be used to deduce some interesting insights about the impact of phoneme
transcription quality on WER. It has been found that Mlphon lexicon performs the best
with most of the acoustic models, closely followed by Espeak lexicon. The meticulously
crafted pronunciation rules have an effect on this improvedWER. The context-free mono-
phone acoustic model works well with the Espeak lexicon. This might be as a result of
the contextual co-articulation effects being already included in the Espeak lexicon. The
Unified Parser Lexicon performs poorly in terms of WER because it ignores the major-
ity of the contextual rules highlighted in Appendix I. This analysis is an indicator of the
importance of precise G2P conversion required for speech tasks.

Although there have been previously published works on ASR for continuous Malayalam
speech [69, 97, 135], each one was tested using private datasets described in respective
papers. The lexicon creation process was not explicitly explained. Additionally, some of
these works did not mention the sizes of the pronunciation lexicon and OOV rates, which
have a significant impact on the WER. Nevertheless we present a comparison of these
previously reported WERs with ours. It is observed that, on two different test datasets
of OOV rates 14% and 1%, the proposed ASR with Mlphon lexicon provides similar or
better WERs when compared with previously reported WERs as listed in Table 5.8.

5.5 Publication of Malayalam LVCSR Model

The speech recognition model in the form of a WFST graph, HCLG.fst, created using
the procedures mentioned in this chapter is made publicly available in a format that could
be integrated with the open source speech recognition toolkit, Vosk 5.

5https://alphacephei.com/vosk/
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Table 5.8: Comparison ofWER from previously reported works onMalayalam ASR. The
ASR we built using the lexicon created with Mlphon performs at par with the previously
reported works.

ASR Model Lexicon size OOV Rate (%) WER (%)
Deekshita et al. [69] 29k 8 34.2
Lavanya et al. [97] - - 34.4
Lekshmi et al. [135] - - 10.0
TDNN + Mlphon lexicon 69k 14 34.6
TDNN + Mlphon lexicon 69k 1 9.6

For the purpose of demonstration, we have integrated the Malayalam ASR model, into
a browser based demo page 6. The model could be loaded to the browser and used for
converting speech to text, without passing the speech to server side. A screenshot of the
demo page is in Fig. 5.1.

Figure 5.1: The Website demonstrating the ASR developed as per the description in this
work

5.6 Summary

This chapter describes the development of an LVCSR model for the Malayalam language.
The development of an automated tool calledMlphon for G2P conversion has made it pos-
sible to create a pronunciation lexicon for the language. The acoustic model was trained
using LF-MMI discriminative training criteria with a TDNN, which is the first attempt of
its kind for Malayalam. The resulting LVCSR model, when combined with the pronunci-
ation lexicon built using Mlphon, achieved the best WER on two different test datasets.

6Vosk Demo: https://kavyamanohar.github.io/vosk-browser/
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However, the performance of the model was affected by the OOV rate, indicating the
need for alternative language modelling techniques based on subword segmentation. The
following chapter discusses these alternative language modelling techniques, which can
potentially improve the performance of the LVCSR model for Malayalam.
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Chapter 6

Subword based Open Vocabulary
Continuous Speech Recognition for

Malayalam
6.1 Introduction

In this chapter we shift our focus to subword segments instead of words to generate the
language models and pronunciation lexicons. We discuss how subword models would
be beneficial to Malayalam LVCSR. We propose two linguistically motivated subword
segmentation algorithms for Malayalam and compare their performance with language
independent subword segmentation algorithms in the context of open vocabulary pipeline
ASR.

6.2 Open Vocabulary ASR

Figure 6.1: Block schematic representation of hybrid ASR system, with subword based
language model and pronunciation lexicon

ASR is challenging for low resource languages in a a morphologically complex setting [7].
Morphological complexity is characterised by productive word formation by agglutina-
tion, inflection, and compounding, leading to very long words with phonetic and ortho-
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graphic changes at morpheme boundaries [77]. Malayalam language is known to have a
high level of morphological complexity than many other Indian and European languages
in terms of TTR and TTGR [9, 71]. This creates a large number of low frequency words
and it is practically impossible to build a pronunciation lexicon that covers all complex
wordforms. Additionally, it introduces the problem of data sparsity in language mod-
elling [36].

Deep learning based acoustic modelling improves speech recognition accuracy for lan-
guages with abundant training data [136]. Statistical GMM-HMM or hybrid DNN-HMM
methods are best suited for languages with limited labelled audio [4]. When much more
text data is available than audio data, hybrid models are the preferred choice [5, 6]. Hy-
brid ASRmodels require explicit pronunciation lexicons and languagemodels as shown in
Figure 1.1. Language modelling of morphologically complex languages can not achieve
the word sequence prediction capabilities of simple morphology languages [137, 138].
Additionally, finite sized word vocabulary of a pronunciation lexicon can not cover com-
plex wordforms and loan words that appear in a real world testing. As a result, there is a
difficulty in recovering words that are not in the lexicon. [36].

The OOV rate is the proportion of words in a given speech sample that are not present in
the vocabulary of the ASR lexicon. OOVwords can not be recognised by the conventional
word based ASR decoder. Large number of OOV words, and data sparsity are the nat-
ural consequences of word based language models in ASR for morphologically complex
languages [36]. Segmenting words to appropriate subword units before processing, and
later reconstructing them to the whole words is a viable approach to solve the issues of
data sparsity and OOV rates. When subword segments are used for language modelling,
a dummy symbol is added to identify the positions where the segments can be glued to-
gether to form words [78]. When subwords replace words, the ASR vocabulary contains
morphemes, syllables, or other character sequences that together can be used to create an
unlimited number of words [82, 139].

Subword ASR decoder requires an additional module to reconstruct words from the de-
coded subword units as shown in Figure 6.1. Languagemodelling on subword segments in
ASR for morphologically complex languages has been extensively studied [139–143] in
the context of hybrid ASR systems. Subword segmentation based language modelling has
been proposed for applications in automatic speech recognition [36,81,82,139,144], sta-
tistical machine translation [40], neural machine translations [145, 146] and handwriting
recognition [147].

The reconstruction from subwords to words is facilitated by adding a dummymarker sym-
bol [36]. In the experiments we perform in this work, we use continuity marker “+” to
the right side of the subwords, to indicate another subword has to follow it. In this ap-

80



proach, reconstruction is straightforward, as the marker indicates the positions for joining
the following subword. The Table 6.1 illustrates the usage of continuity marker in our
experiments.

Table 6.1: Segmentation illustrating the usage of continuity marker symbol ‘+’.

Original Text Segmented text
അവൻ വള ഇടുകയില്ല അ+ വൻ വള ഇടുക+ യില്ല

6.3 Graphemic and Phonemic Pronunciation Lexicon

For languages where space and punctuation marks act as delimiters between words, seg-
menting raw text of the language into words is pretty straightforward. However to seg-
ment text to subword units, there are data driven as well as linguistically informed al-
gorithms [7, 36]. Morfessor [139, 148, 149], Byte pair encoding (BPE) [145, 150] and
Unigram [146] are a few data driven algorithms in popular use. These algorithms do not
ensure that subword segmentation happens at valid pronunciation boundaries. This makes
precise representation of its pronunciation as a sequence of phonemes impossible.

Table 6.2: Phonemic Lexicon

Word Pronunciation
SOPHIA s o ʊ f i ə

For example if the word SOPHIA /soʊfiə/ is segmented as SOP+ HIA, the pronunciation
can not be segmented in a valid way. Then what is viable is to represent each subword
segment in the lexicon with its pronunciation described as a grapheme sequence. Tables
6.2 and 6.3 indicate how these entries would be represented in a phonemic and graphemic
lexicon respectively. In this work, we use graphemic lexicons and graphemes would be
mapped to acoustic features during acoustic model training. Subword based lexicon has
the continuity marker “+” indicating it will be followed by another subword segment to
complete a word.

Table 6.3: Graphemic Lexicon

Word Pronunciation
SOPHIA S O P H I A

Subword Pronunciation
SOP+ S O P
HIA H I A

In this work, we propose two linguistically motivated subword segmentation algorithms.
First one is a purely linguistic syllabification approach, tailored specifically for Malay-
alam. The second one is a hybrid subword segmentation algorithm, S-BPE, combining
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linguistic syllabification rules with the data driven segmentation method of BPE. We de-
sign our experiments to answer two related research questions:

1. How does segmentation method affect the language modelling complexity in a mor-
phologically complex setting?

2. How does the choice of segmentation strategy affect the ASR performance in terms
of WER, OOV-WER and model memory requirement?

Due to the low resource nature of Malayalam with limited audio training data but com-
paratively higher amount of text data, we experiment on hybrid DNN-HMM based ASR
for Malayalam, where acoustic and language models are trained separately [5, 6].

6.4 Subword Segmentation Strategies - A Review

A language model estimates the likelihood of word or subword sequences to form a valid
sentence. To estimate these likelihood, the raw text of the language has to be segmented
into words or subwords. This section explains various segmentation strategies proposed
in literature. The suitability of subword segmentation depends on the task (speech recog-
nition, machine translation, text prediction etc.) under consideration. Segmentation tech-
niques that could be adapted for Malayalam language are used in the ASR experiments
performed in this research work.

Orthographic syllable based segmentation of text was proposed by Kunchukuttan et al.
for statistical machine translation applications [40]. Splitting the tokens based on vowels
and adjacent consonants, named Vowel segmentation, was proposed by Adiga et al. and
employed in the context of Sanskrit speech recognition [81]. These two methods segment
text to syllable-like units at valid pronunciation boundaries.

Several approaches for segmenting Malayalam text to meaningful morpheme units in-
corporating linguistic knowledge are reported in literature. But for the reasons listed
below, none of these could be used for the language modelling task required for ASR.
For Malayalam morphological segmentation, earlier studies have used probabilistic, rule-
based suffix-stripping, machine learning and dictionary-based approaches [151–154]. The
most recent deep learning technique uses Romanised Malayalam text and require anno-
tated data for training [155]. However, none of these research offers an API that can be
programmed to perform morphological segmentation for use in downstream applications.
The only tool with a programmable interface that works with Malayalam script performs
morphological analysis1 and not morphological segmentation [10]. For example we need
the compound word ആനകൾ /aːnakaɭ/ to be segmented as ആന+ കൾ /aːna+/ /kaɭ/,

1Mlmorph: https://pypi.org/project/mlmorph/
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while its morphological analysis returns ആന<noun><plural>. Morphological anal-
ysis is not appropriate for an ASR task, as we expect to piece together the original word
from morpheme segments by concatenation. For the ASR task, we therefore do not rely
on any linguistically informed morpheme segmentation in Malayalam.

The data driven segmentation methods are designed only based on word spellings and
do not have access to pronunciation information. It is therefore possible for these algo-
rithms to break a word sequence into units that do not imply well-formed correspondence
to phonetic units. Pronunciation assisted subword modeling (PASM) is an algorithm pro-
posed to solve this issue by using a pronunciation dictionary as an aligner to determine
the positions for segmentation [144]. To perform this task, PASM needs a pronunciation
dictionary. It uses CMUDict to report the results on English language. But many low
resource languages do not have a ready to use pronunciation dictionary. In the compar-
ative analysis performed in this work, we use several segmentation methods that breaks
the pronunciation flow. So to be fair in the comparison, we use only graphemic lexicons
and not phonemic ones. In this scenario, PASM for segmentation is not used.

For ASR applications in morphologically rich languages, a segmentation technique that
ensures rare subwords are included in the vocabulary was proposed byManghat et al. [82].
This is the first work that uses subword based language modelling in Malayalam - English
code switched ASR. Since the algorithmic implementation is not publicly available, we
have not attempted its usage in the experiments in this work.

The segmentation techniques already reported in literature and that could be adapted for
Malayalam language and employed in the experiments reported in this work are described
in the following subsections.

6.4.1 Word Segmentation

InMalayalam, the technique of word segmentation is simple. After removing punctuation,
the raw text corpus is divided up by spaces.

6.4.2 Morpheme Segmentation - Using Morfessor

Morfessor is a language independent, data driven method of subword segmentation. The
Morfessor baseline algorithm is based on minimum description length principle [148]. It
is an unsupervised technique in which frequently occurring sub strings in several different
word forms from the raw training text corpus are proposed as morphs (or morpheme-like
units) and the words are then represented as a concatenation of morphs [139]. Its current
version, Morfessor2.0, has a Python interface that may be customised and it supports anno-
tated training data as well [149]. The Morfessor method guarantees neither segmentation
at appropriate pronunciation boundaries nor segmentation into meaningful units.
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6.4.3 BPE Segmentation

BPE is a data driven algorithm that determines the optimal set of subword tokens through
an iterative process. It was originally proposed as a data compression algorithm [150].
BPE algorithm splits the training data into characters and create an initial vocabulary.
During further iterations, the most frequent character bigrams are determined, merged
into a single token and added to the vocabulary. The process is continued until a desired
number of merge operations are performed. The final vocabulary size is the sum of ini-
tial vocabulary and the number of merge operations, which is a hyper-parameter. The
subword tokens in the learnt vocabulary are later used to segment any text. BPE ensures
that the most common words are represented in the pronunciation dictionary as a single
token while the rare words are broken down into two or more subword segments [145].
BPE segmentation algorithm available in subword-nmt python library is used in the
experiments described in this work2.

6.4.4 Unigram Segmentation

Unigram segmentation [146] is another language independent segmentation algorithm. It
makes the assumption that the subwords of the sentence are independent of one another.
The vocabulary of desired size is built from a heuristically large vocabulary by retaining
only η% (say η = 80) of the subwords in each iteration, and discards the rest. The top 80%
of subwords are obtained by ranking all subwords according to the likelihood reduction
on removing it from the vocabulary. The most probable segmentation of an input sentence
is determined by the Viterbi algorithm. The Unigram segmentation algorithm is available
in the open source python library, sentencepiece3, which is used in the experiments
performed in this work.

6.5 Proposed Subword SegmentationAlgorithms forASR

In this section, we present the details of our proposed subword segmentation algorithms.
The first one is the FST based syllabification algorithm and the other is the hybrid algo-
rithm combines the data driven approach of BPE with linguistic information about sylla-
bles.

6.5.1 Syllable Segmentation

To performs segmentation that aligns with the Malayalam script, it is important to analyse
the nature of grapheme inventory of Malayalam. The graphemes in Malayalam script are

2subword-nmt: https://pypi.org/project/subword-nmt/
3sentencepiece: https://pypi.org/project/sentencepiece/
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classified as: (i) Vowels, (ii) Vowel signs, (iii) Regular Consonants, (iv) Special conso-
nants : anuswara, visarga and chillu, and (v) Multi-functional character: virama. Vowel
graphemes occur only at word beginnings. Regular consonants inherently have the vowel
/a/ present in them. Vowel sounds at positions other than word beginnings are represented
by vowel signs. Vowel signs modify the inherent vowel sound of the consonants. A conso-
nant cluster, also known as a conjunct, inMalayalam is a sequence of consonants separated
by virama in between, where virama kills the inherent vowel from the preceding conso-
nant [118]. Chillus are special consonants that do not have inherent vowel associated with
them. The characteristics of other special consonants and virama are marked in Table 6.4.
The syllabification process will make use of these linguistic rules.

Table 6.4: Special consonants and Virama sign in Malayalam

Character Properties
Anuswara Represents /m/ at syllable ends
Visarga Introduces aspirated glottal stop
Chillu Dead consonants with no inherent vowel
Virama Kills Inherent vowel in conjuncts

and inserts schwa at word ends.

A syllabification algorithm tailored for Malayalam script using finite state transducers has
been introduced in Chapter 4. The linguistic rules for syllable segmentation has been com-
putationally implemented as in Algorithm 6 and made available as part of the Mlphon
Python library4. We use Mlphon, to perform syllable segmentation. This results in a vari-
able length subword segments where each segment is a syllable with valid pronunciation.

Algorithm 6 FST based Syllabification Algorithm
1: procedure Syllable boundary tagging
2: c_v← consonant + virama
3: Type 1← <BoW> + vowel+[anuswara, visarga, chillu] ? ▷ ? indicates optionality
4: Type 2← consonant + vowelsign ? + [anuswara, visarga, chillu]?
5: Type 3← c_v * + C ▷ * indicates one or more occurence
6: Type 4← c_v ? + consonant + ◌ു? + virama + <EoW>
7: syllable← [Type 1, Type 2, Type 3, Type 4] ▷ Defines a syllable
8: SyllableBoundaryTagger: <BoS>+ syllable + <EoS>← syllable
9: end procedure

6.5.2 S-BPE Algorithm

Syllable-BPE (S-BPE) is a hybrid algorithm that takes into account syllables as irreducible
units in the same way that BPE takes into account characters. S-BPE algorithm needs to
learn the syllable sequence frequencies from a training corpus, before it can be applied

4https://pypi.org/project/mlphon/
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to segment words. During training, it creates a symbol vocabulary of most frequent syl-
lable sequences. During segmentation, the algorithm compares the text with the symbol
vocabulary file and segments the words into subwords that are most frequent sequence
of syllables. The algorithmic implementation has been adapted from the original BPE
algorithm in subword-nmt python library, and made available under MIT License 5.

Training

To begin with, the words in the S-BPE training corpus are syllabified using the Algorithm
6. A symbol vocabulary, V is created by populating it with the unique syllables. The
words in the training corpus is searched to determine the most frequent symbol bigram
and that bigram is then merged and added as a new entry to the symbol vocabulary. All the
occurrences of this bigram will be replaced in the training corpus using the newly merged
symbol bigram. This step is repeated for a desired number of times, k as described in
Algorithm 7. The number of merge operations is set to k = 10000, in our experiments.

Algorithm 7 S-BPE Training Algorithm
Require: Set of strings D, Number of merges k
1: procedure S-BPE(D, k)
2: Vocab← All unique syllables in D
3: merge_counter = 0
4: while merge_counter < k do ▷ Merge frequent bigrams
5: SL, SR← Most frequent bigram in D
6: Snew ← SL+SR ▷ Merge most frequent symbols
7: Vocab← Vocab + Snew

8: Replace each occurrence of SL, SR with Snew

9: merge_counter = merge_counter + 1
10: end while
11: end procedure

Segmentation

First, the text to be segmented is syllabified using Algorithm 6. Then every instance of the
syllable sequence SL, SR in the corpus to be segmented is replaced with Snew, in the order
in which those symbols were learnt and added to the vocabulary, Vocab. S-BPE ensures
that the most common words are represented in the vocabulary as a single symbol while
the rare words are broken down into two or more subword segments while guaranteeing
each segment has a valid pronunciation.

This entire process effectively combines the knowledge based syllabification with the data
driven BPE. The syllabification algorithm is tailored for Malayalam script. However S-
BPE algorithm can be extended to any language that can be syllabified.

5https://github.com/kavyamanohar/subword-syl-bpe-ml/tree/sbpe
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6.6 Experimental Setup

This section presents the details of our experiments6. We begin with a description of the
datasets followed by a discussion on building components for hybrid ASR system. We
will describe in detail about the segmentation of the text corpus for language modelling,
creation of segmented pronunciation lexicons and the process of acoustic modelling.

6.6.1 Datasets

We rely on publicly available open licensed read speech datasets [84, 85] for Malayalam.
Every audio recording in the dataset is associated with a textual transcript in Malay-
alam script. We divide the available speech into train and test datasets, ensuring non-
overlapping speakers and speech transcripts. The train datasets described in Table 5.5 are
combined to get 1125 minutes of audio for acoustic modelling. The training dataset is
same as that of the experiment described in chapter 5. Since the focus of this chapter is
on the usage of open vocabulary ASR to recover OOV words, we have not used the test
dataset with fewer than 1% OOV words.

Table 6.5: Details of Speech data sets used in our experiments.

Name Corpus #Speakers #Utterances Duration
(minutes)

1 Indic TTS, IITM [84]- Train 2 8601 838
2 Open SLR Malayalam [85] - Train 37 3346 287
T1 Open SLR Malayalam [85] - Test 7 679 48

To create the language model, we use the sentences from the speech transcripts and com-
bine it with the curated collection of text corpus published by SMC [106]. From this, every
sentence that appeared in our test dataset is explicitly removed to prevent overfitting. The
resulting text corpus contains 205k unique sentences, 1325k word types, and 356k unique
word tokens.

6.6.2 Hybrid ASR components

The hybrid ASR decoder consists of three modules as described in Figure 1.1. The func-
tions of these modules are listed below:

1. The acoustic model predicts the posterior likelihood Pr(X|Q) of CD tied phone
HMMstatesQ = Q0, Q1, ...QK given the acoustic feature vectorsX = X0, X1, ..., XN .
Modern acoustic models are usually implemented with deep neural networks. Deep

6The Kaldi Experimental Setup: https://gitlab.com/kavyamanohar/ml-subword-asr/
-/tree/master/
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neural network training relies on the frame level alignment of audio and phoneme
labels obtained from a previously trained GMM-HMM acoustic model [156].

2. The pronunciation lexicon maps words into sequence of phonemes. The acoustic
model training module would need to look up the pronunciation lexicon to convert
the word-level transcripts into phoneme sequences.

3. The language model predicts the conditional likelihood Pr(wi+1|w0, w1, ...wi) of
the next word wi+1 given the previous words.

All these components are composed into a weighted finite-state transducer framework
[157] and the most likely word sequence is retrieved using graph search methods. This
word based system would serve as the baseline for our experiments.

Subword based ASR, as shown in Figure 6.1 is very much like word based ASR system,
except that (i) the language model represents the conditional probability of subword se-
quences, instead of words and (ii) the pronunciation lexicon is composed of subword seg-
ments. The word boundary marker is chosen so that the predicted subword segments can
be easily concatenated to form words. We use the the segmentation methods described in
6.4 and 6.5, and compare them with the standard word-based ASR to answer the research
questions. The creation of segmented text corpus for subword language model training
and the creation of segmented pronunciation lexicons are explained in the following sub-
sections.

6.6.3 Creating Segmented Text Corpora

This section explains the text corpus segmentation procedure. Morfessor, BPE and Uni-
gram are data driven segmentation algorithms while S-BPE is a hybrid one that addition-
ally relies on linguistic knowledge. We use a subset of the text corpus (7.5k sentences) to
train the data driven and hybrid models.

1. Words are separated by spaces in the text corpus and are easily segmented.

2. Using the default settings with Morfessor 2.0 [149] we trained Morfessor on the
training set and applied it to create morpheme segmented text corpus.

3. BPE [145] learns the vocabulary from the training dataset. The initial vocabulary is
formed by the Malayalam characters in the training dataset. The number of merge
operations is set to 10000. This results in a BPE model which is used to obtain the
BPE segmented text corpus.

4. Unigram [146] model is trained by the sentence piece library using the train-
ing dataset with a vocabulary of 15000. The trained Unigram model is used to get
the Unigram segmented text corpus.
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5. Being a rule based algorithm, syllabifier requires no training. Algorithm 6 is directly
applied on the text corpus to obtain syllable segmented corpus.

6. S-BPE model is trained using the Algorithm 7 so that the vocabulary is learnt.
The initial vocabulary is formed by the Malayalam syllables present in the training
dataset. The number of merge operations is set to 10000. This results in a model
which is used to obtain S-BPE segmented text corpus.

Samples of text segmented using these methods are presented in Table 6.6.

Table 6.6: Examples for different segmentation strategies. Space is used as delimiter
between segments.

Method Example Segment count
Word അവൻ വള ഇടുകയില്ല 3

/aʋan ʋaɭa iʈukajilla/
Morfessor അവ+ ൻ വള ഇട+ ◌ുക+ യില്ല 6

/aʋa+ n ʋaɭa iʈa+ uka+ jilla/
BPE അവൻ വ+ ള ഇടു+ കയ+ ◌ില്ല 6

/aʋan ʋa+ ɭa iʈu+ kaja + illa/
Unigram അവ+ ൻ വള ഇട+ ◌ുകയില്ല 5

/aʋa+ n ʋaɭa iʈa+ ukajilla/
Syllable അ+ വൻ വ+ ള ഇ+ ടു+ ക+ യി+ ല്ല 9

/a+ ʋan ʋa+ ɭa i+ ʈu+ ka+ ji+ lla/
S-BPE അവൻ വള ഇടു+ കയില്ല 4

/aʋan ʋaɭa iʈu+ kajilla/

6.6.4 Language modelling

Because highly inflected words can be divided into smaller pieces, segmentation into sub-
words can lessen the impact of rich morphology [138]. Statistical n-grams serve as a
simple and powerful tool to capture language modelling information. The order of n-
gram needed to capture this information depends largely on the properties of the segments
used. The segmentation strategy determines the properties of the segmented training text
- affecting the total number of segments in the text, the number of characters within each
segment, the number of segments in a word and the frequency of segments.

For a sentence W formed by sequence of N segments W = w1, w2...wN , the probabil-
ity Pr(W ) of the sentence is given by the following formula applying the chain rule of
probability.

Pr(W ) = Pr(w1, w2, ...wN) (6.6.1)

= Pr(w1)P (w2|w1)...P r(wN |wN−1, wN−2...w1) (6.6.2)
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Based on the Markovian assumption of n-gram language modelling, probability of each
word depends only on the previous n − 1 words. This makes the sentence probability to
be computed as:

Pr(W ) =
N∏

i=1
Pr(wi|wi−1, wi−2..wi−(n−1)) (6.6.3)

Perplexity, PPL of a sentence, is the inverse probability normalised by the number of
segments, N . Normalisation ensures, longer sentences are not heavily penalised.

PPL(W ) =
(

1
Pr(W )

) 1
N

(6.6.4)

Perplexity can be interpreted as the weighted average branching factor of a language.
The branching factor of a language is the number of possible next words that can fol-
low any word. Higher perplexity is positively correlated with the difficulty in language
modelling [158]. Since the number of segments, N is largely determined by the segmen-
tation method, perplexity measure that is dependent of this parameter can not be used to
compare modelling complexity across different segmentation methods [137]. The nega-
tive log likelihood (NLL) of the segment probability distribution effectively removes this
dependency as described in the following equation.

NLL(W ) = −log2 (Pr(W )) (6.6.5)

= Nlog2 (PPL(W )) (6.6.6)

The metric NLL(W ) is called surprisal [138]. By scaling down the NLL(W ) by the
number of characters, M in a sentence, we can obtain the log character level perplexity,
log PPLc(W ) as in equation 6.6.7. The number of characters in a sentence is independent
of the segmentationmethod and like surprisal, this metric can be used to compare language
modelling complexity across segmentation methods.

log PPLc(W ) = N

M
log2(PPL(W )) (6.6.7)

Alternatively log word level perplexity, log PPLc(W ), where the scale factor is the num-
ber of words in a sentence can also be used for comparison across segmentation methods.

90



For language modelling complexity comparisons across segmentation methods, surprisal
is employed in [138], log PPLc(W ) is used in [159], and PPLw(W ) is used in [36]. To
compute the surprisal per sentence (SPS) of a corpus that contains k (k = 680) number of
sentences, we use the equation 6.6.8.

SPS = 1
k

k∑
i=1

NLL(Wi) (6.6.8)

In the experiments performed in this work, we report both PPL(W ) and SPS for lan-
guage modelling complexity. Statistical n-gram language modelling is performed on the
segmented text corpus. SRILM toolkit is used for the training and evaluation of mod-
els [129]. To avoid zero probability assignment to unseen word sequences, the probability
weights are redistributed by a process known as smoothing. We use the modified Kneser-
Ney smoothing algorithm [27] to create n-gram language models of orders 2 to 6 for every
segmentation strategy. The models are trained to predict the next segment based on the
previous n-gram context. The SRILM toolkit can evaluate the test dataset and return the
log-likelihood values with respect to base 10 logarithms and the perplexity. Surprisal
values are computed by converting these values to base 2 logarithms.

6.6.5 Creating Segmented Lexicons

Graphemic lexicon describes the pronunciation using the language’s native alphabets, or
graphemes. Since BPE, Unigram and Morfessor segmentation algorithms in our experi-
ments do not have access to pronunciation information, the segmentation can happen at
locations that break the pronunciation flow. So, it was decided to use a graphemic pro-
nunciation lexicon, instead of a phonemic one [36] for all the segmentation methods to
ensure fair comparison.

Algorithm 8 Subword Lexicon from Word Lexicon
Require: PLword

1: procedure Create-Subword-Lexicon(PLword)
2: subwords = {} ▷ Define an empty list
3: for word in PLword do
4: subwords + = Get-Subwords(word) ▷ Expand list
5: end for
6: vocabulary← Unique(subwords) ▷ List of unique subwords
7: PLsubword← Generate-Pronunciation(vocabulary)
8: return PLsubword

9: end procedure

For the baseline ASR, the word pronunciation lexicon is prepared by using all the words in
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the text corpus with at least three occurrences. It is then expanded to include all the words
in the training speech transcript. This word lexicon is referred to as PLword and has 79947
entries. Subword lexicons are obtained by segmenting every word entry in PLword as per
the segmentation strategy under consideration and choosing the list of unique segments as
described in Algorithm 8. The number of entries in these lexicons are described in Table
6.7.

Table 6.7: Lexicon sizes of different segmentation

Segmentation Lexicon Size
Word 79947
Morfessor 10545
BPE 9986
Unigram 19564
Syllable 6279
S-BPE 15926

6.6.6 Acoustic modelling

The speech sampling rates of the two train speech corpora are converted to 16kHz prior
to feature extraction. During acoustic model training the pronunciation of every word
present in the transcript is looked up in a graphemic pronunciation lexicon.

We use the Kaldi chain acoustic model in our experiments. It is based on a TDNN [23]. It
is trained using frame-level phoneme state labeling obtained from GMM-HMM speaker
adaptive triphone acoustic model. State labels are used as targets to train the TDNN
acoustic models. Acoustic features used in TDNN training are: (i) 40-dimensional high-
resolution MFCCs extracted from frames of 25 ms length and 10 ms shift and (ii) 100-
dimensional i-vectors [19] computed from chunks of 150 consecutive frames. Three con-
secutive MFCC vectors and the i-vector corresponding to a chunk are concatenated, ob-
taining a 220-dimensional feature vector for a frame. This acoustic model is trained on a
single NVIDIA Tesla T4 GPU.

6.6.7 Summary of Experimental Investigations

The acoustic models are built and combined with language models and pronunciation lex-
icons using Kaldi toolkit [3]. From six ways segmented text corpus, we construct lan-
guage models with n-gram orders of 2 to 6. The language modelling effectiveness is then
measured using corpus level and information theoretic metrics. Keeping the Kaldi based
TDNN acoustic model fixed across segmentation methods, we use segmented lexicons
and corresponding language models to create 30 (1 acoustic model × 6 segmented lex-
icons × 5 n-gram orders) different ASR decoders. These decoders are then tested on a
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multispeaker test dataset described in Table 5.5.

6.7 Results

In this section, we present the findings from our experiments. We first perform a corpus
linguistic analysis on the segmented corpora. After that, we analyse the language model.
This is done in terms of the metric surprisal, which roughly indicates the length, complex-
ity, and overall difficulty that the model has in predicting sentences [137]. Finally, we
analyse the ASR results. The WER, OOV-WER, lexicon size, and overall model size are
used to measure this.

6.7.1 Corpus Linguistic Analysis

Words can be broken down into smaller pieces that are likely to convey similar meanings in
different contexts by segmenting them into subwords, which can lessen the impact of rich
morphology. The examples of segmentation done by different segmentation method given
in Table 6.6 indicates how the number of segments per sentence varies with the method of
segmentation. It can also be observed from the table that the mean segment length (MSL)
also depends on the segmentation method. The evaluation of these parameters over the
speech transcripts in the test corpus is described next.

Linguistic Validity of Segments

The segments given by different methods, as exemplified in Table 6.6, does not neces-
sarily comply with linguistic correctness. The word segments are orthographically and
phonetically valid linguistic units. The segmentation given by Morfessor tool are not true
morpheme segments. The Morfessor segments break the orthographic flow as in ഇടുക
/iʈuka/ being segmented as ഇട+ ◌ുക /iʈa+ uka/. In the second segment, the vowel
sign ◌ു, occurs without a consonant preceding it, which is an invalid orthographic usage.
Similar invalid orthographic usages can be observed in BPE and Unigram segmentation
methods too.

Syllable segmentation method, by its design, always gives orthographically valid subword
units. S-BPE method also gives orthographically valid subword units, which are longer
than syllable segments. But none of the methods are capable of providing linguistically
meaningful subword segments. However, unlike machine translation applications, this is
not an essential requirement for building an ASR system.
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Figure 6.2: Distribution of the number of subword segments per word

Segment Count per Word and per Sentence

The distribution of number of segments per word in the test dataset is illustrated in Fig.
6.2. Word segmentation does not beak down the words, resulting in a single bar graph.
In BPE, Unigram and S-BPE segmentation methods, more than 50% of the words remain
unsegmented, followed by words being segmented into two subwords. In Morfessor seg-
mentation, the distribution shows more than half the words are segmented into two, fol-
lowed by words remaining unsegmented. The percentage of words that get segmented into
more than two segments are rare in all these methods. However in syllable segmentation,
about 28% and 24% of words get segmented into two and three subwords respectively.
The segment length per word is more broadly distributed in syllable segmentation.

Table 6.8: Sentence length statistics in terms of the number of segments per sentence.

Segmentation Minimum Maximum Mean
Word 5 14 6.4
BPE 5 26 8.5
Morfessor 6 29 11.7
Unigram 5 29 10.1
Syllable 8 49 19.9
S-BPE 5 25 8.1

On analysing the segmentation statistics over sentences, we get the values reported in Ta-
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ble 6.8. It describes the minimum, maximum and mean number of segments per sentence.
Syllable segmented sentences contain on an average 19.9 subword segments, which is the
highest count of all. Sentences that contain large number of segments would need longer
n-gram language model context to guide the decoding [36]. We will analyse its impact on
ASR later in section 6.8.

Mean Segment Length

The MSL, defined as the average number of characters in a segment, depends on the seg-
mentation strategy. The distribution of segment lengths, in the form of box plots is shown
in Figure 6.3. The glsmsl is the highest for words (8.3) as expected and the smallest is for
syllables (2.2). The MSL values of other segmentation methods are 3.9, 4.3, 4.5 and 4.8
respectively for Morfessor, Unigram, BPE and S-BPE.

Comparatively smaller box for syllable, indicates the length is distributed closely about
the median value, with very little outliers. However for word segmentation, the length of
box plot is larger, indicating the segment lengths vary widely.

Figure 6.3: Segment Length distribution in the datasets

6.7.2 Language modelling Complexity

The complexity of a language model is related to its difficulty in determining the next
segment from the previous n-gram context. The higher order n-grams extract more context
for the occurrence of a segment and generally reduces language modelling complexity and
hence perplexity. However raising the n-gram order beyond a limit reintroduces the data
sparsity problem, resulting in unimproved perplexity and SPS values [159]. Subword
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language models require higher order n-grams to capture the context, than word based
ones [80]. In our experiments we create language models of orders n − gram = 2 to 6
and analyse their complexity in terms of perplexity and SPS.

Table 6.9: Language modelling Complexity in terms of Perplexity

n-gram Word BPE Morf. Uni. Syl. S-BPE
Perplexity

2 2266 334 162 287 44 387
3 2188 245 111 211 19 308
4 2187 242 107 208 16 307
5 2188 241 107 207 16 307
6 2188 242 107 207 16 307

Table 6.9 presents the values of perplexity over different segmentation and n-gram orders.
For any given n-gram order, it can be observed from this table that the perplexity value
follows the pattern: Word > S-BPE > BPE > Unigram > Morfessor > Syllable. This
is inversely correlated with the mean number of segments per sentence, N , tabulated in
Table 6.8. Lower the value of N , higher is the perplexity. However the perplexities are
not comparable across different segmentation methods [160]. But for a specific segmen-
tation, the perplexity can be compared along the variations in n-gram orders. So it can
be concluded that the fourth order syllable level language model with lower perplexity is
an improved model than the corresponding second order language model with higher per-
plexity. But it does not necessarily imply the fourth order syllable level language model
with lower perplexity is better than fourth order word level language model with higher
perplexity.

Table 6.10: Language Modelling Complexity in terms of SPS

n-gram Word BPE Morf. Uni. Syl. S-BPE
SPS

2 70 98 99 99 124 96
3 69 93 92 94 98 92
4 69 93 91 93 93 92
5 69 93 91 93 92 92
6 69 93 91 93 92 92

The SPS values obtained in our experiments are shown in Table 6.10. As expected, the
SPS reduces initially and then stabilises with increase in n-gram order for every segmenta-
tion method. However, it is interesting to note that the best set of SPS values are obtained
for word segment based language model. Syllable segments of lower n-gram orders show
higher SPS values than all other segmentation methods. For the test corpus under eval-
uation, all subword segment based language models exhibit a comparable SPS value of
≈ 92, at higher n-gram orders (n ≥ 4). To conclude, word level language model is better
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off than all the segmented language models in terms of SPS. This pattern is previously
observed in [36], where the complexity is computed in terms of PPLw(S).

The impact of subword segment based language modelling on ASR decoder needs to be
evaluated in terms of its ability to recover OOV words and corresponding reduction in
WER, which is attempted in the following section. However, lowering the languagemodel
complexity does not always ensure an improvement in automatic speech recognition ac-
curacy [36, 161].

6.7.3 Evaluation of ASR performance

To begin with, we present the ASR error rate which is computed as WER. It is based on
the number of words inserted, deleted and substituted in the predicted speech transcript
when compared to the ground truth transcript according to (6.7.1).

WER = (Insertions + Deletions + Substitutions) × 100
(Number of words)

(6.7.1)

The evaluation is performed on a multi-speaker studio recorded dataset from the same
domain as the train dataset. About 14% of words in this test dataset are OOV words,
which can not be recovered by word based ASR. According to [162], it has been shown
that the presence of an OOV word in test set can result in approximately two errors during
ASR decoding.

Figure 6.4: ASR performance evaluation in terms of the WER (lower is better)

The WER of different segmentation methods is shown in Fig. 6.4. The baseline word
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Figure 6.5: Trade-off between ASR performance and Model Memory Requirement (n-
gram order is shown as labels)

model with a lexicon size of 79k has a word error rate (WER) of≈ 35% for all n-gram or-
ders. The performance of all subword models is better than the baseline, except for bigram
syllable language model. However, for n-gram orders 3 and above, syllables demonstrate
an improvement in WER compared to all other segmentation methods and n-gram orders.
Syllables with the smallest MSL among all segmentation methods, require more n-gram
context to make a reasonable prediction about the next subword segment. But once it has
enough context, the predictions become more reliable as exemplified in the WER reduc-
tion in Fig. 6.4.

Syllable is the only segmentation method that show consistent improvement in WER, the
best being 26.4%, at the n-gram order n = 6. But the relative improvement diminishes
with the n-gram order. For all other segmentation methods, the WER does not show
any improvement beyond n-gram= 4. The performance of S-BPE, BPE and Morfessor
remains closer at about 28% WER, for n-gram order of 4 and beyond. The best WER
provided by Unigram segmentation is 29%.

WER of OOVWords

To study the performance of subword based ASR compared to the baseline word model on
OOV recovery, we compute the WER, specifically for OOV words. The OOV words in
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the test set are determined with respect to the word level lexicon. The results are tabulated
in Table 6.11.

Table 6.11: WER on OOV words

Method OOV-WER(%)
Word 100.0

Morfessor 55.3
BPE 53.1

Unigram 55.0
Syllable 49.9
S-BPE 50.2

Since OOVwords can not be recovered by a word segment based ASR, The OOV-WER is
100% for the baseline word based ASR. To analyse the extend of OOV-WER in subword
segmented ASR, we use the texterrors Python library [163]. The OOV-WER values
are computed corresponding to the best WER values reported in section 6.7.3. Providing
the list of OOV words in the test set along with the true speech transcripts, this library
computes the OOV-WER of the subword ASR model. The syllable segments perform the
best, which has reduced the OOV-WER to 49.9%, closely followed by S-BPE segments.
Purely data driven segmentation techniques of BPE, Morfessor and Unigram could also
recover the OOV words, but the WER are not as promising as the Syllable and S-BPE
segments.

Trade-off between WER and Model Memory Requirement

The order of n-gram impacts the memory requirement of the ASR model. To study the
the model memory requirement, we compute the size of weighted FST graph (HCLG.fst)
used for decoding. In the trade-off diagram shown in Fig. 6.5, the model size of the
word based baseline ASR model does not change significantly with the n-gram order.
However, the error rate of the word-based baseline model is higher than all subword-based
models, except for the syllable bigram ASR. Although the syllable bigram ASR has the
smallest model size, its error rate is so high that it is not practical to use and is therefore
not considered in further analysis.

For lower-order language models (n ≤ 4), the subword-segmented ASR models have
significantly smaller sizes compared to the word-based models, while also having a lower
error rate. Syllable segments require less memory at smaller n-gram orders, but the model
size increases quickly with the increase in n-gram order, while the corresponding reduction
in error rate is relatively small. From the figures 6.4 and 6.5, it can be seen that the 4-gram
syllable language model, which has a better error rate than all other subword-segmented
models, has the smallest model size.
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6.7.4 Comparison with Other Reported works

Since the previously published work on subword ASR forMalayalam [82], was tested on a
private dataset, the comparison of results is not meaningful and hence not attempted. The
current study is a detailed expansion of the experiments reported in [164], with the differ-
ence that graphemic lexicons are used instead of phonemic ones, focusing on a medium
OOV test dataset where the WER improvement is notable and within a reasonable rage.

6.8 Findings and Discussions

In this section we analyse the experimental results to draw the relationship between seg-
mentation methods and language modelling and their impact on ASR.

6.8.1 Language modelling Complexity

To compare language modelling performance across different segmentation methods, we
use the SPS metric [160]. The major observations are listed below:

1. For all segmentation methods, language modelling complexity decreases with n-
gram order initially, and then stabilises.

2. Raising the n-gram order beyond a limit (different for different segmentation meth-
ods) reintroduces the data sparsity problem, resulting in unimproved perplexity val-
ues [159]. This limit is 3 for words, BPE and S-BPE, 4 for Morfessor and Unigram
and 5 for syllables as presented in Table 6.10.

3. In terms of SPS, the language modelling complexity is the least for words than all
other segmentation methods.

4. The lower LM complexity in terms of SPS does not guarantee improvedWER [36].

6.8.2 ASR results

Syllable segments give the best WER among all other segmentation strategies, and it hap-
pens for n-gram orders 3 and above. It could recover more than 50% of the OOV words
correctly. This performance improvement can not unambiguously be attributed to the seg-
mentation happening at valid orthographic boundaries. The proposed S-BPE segmentation
did not bring in much reduction in WER, and has a performance similar to that of BPE
and Morfessor segmentation methods and better than word and Unigram segmentation.

The WER result obtained for Malayalam ASR is not correlated with the language mod-
elling complexity of the segmentation method. This pattern was previously observed and
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reported in [36] for Finnish, Swedish and Arabic ASR where word segments show least
language modelling complexity but the highest WER.

The subword lexicons used in our experiments were derived from the word lexicon used in
our baseline experiments by the procedure explained in section 6.6.5. In our experiments,
we compared various segmentation methods in terms of their lexicon size and WER. The
Unigram segmentation method produced the largest subword lexicon, with approximately
19k entries, but it also yielded the highest WER of 29%. On the other hand, the BPE,
S-BPE and Morfessor segmentation methods resulted in lexicons with around 10k to 15k

entries and a similar WER of approximately 28%. However, the syllable segmentation
method with the smallest lexicon size of about 6k entries had the best WER of 26%.
Overall, our results suggest that smaller lexicon sizes can result in better WERs, when the
subword lexicons are derived from a common pool of words.

An optimal choice of n-gram order helps to build ASR models for memory constrained
environments while maintaining a good recognition accuracy. Syllable segments with n-
gram orders 3 and 4 prove to provide best WER at the lowest reported model memory
requirement.

6.9 Summary

The study presented in this chapter is the first investigation on the diverse aspects of im-
proving speech recognition system in the morphologically complex Malayalam language
using subword language modelling techniques. We have presented the detailed investiga-
tion of the usage of different subword segmentation strategies to build statistical n-gram
language models for usage in hybrid ASR task. The language modelling complexity is
evaluated using perplexity and surprisal. We build graphemic pronunciation lexicons of
these subword segments. The ASR decoders built by combining these language models
and lexicons with a common acoustic model are used to evaluate a multi speaker Malay-
alam speech dataset having 14% of OOV words with respect to the baseline word pronun-
ciation lexicon. The ASR performance is evaluated based on the WER, OOV-WER and
the model memory requirement.

It has been demonstrated that the linguistically informed syllable segments perform excep-
tionally well with a 26%WER, which is an 8% improvement from the baseline word level
ASR. The hybrid segmentation strategy proposed in this paper, S-BPE reports a WER of
28%, but it could not beat the syllable subword segments in terms of WER.

To conclude, the syllable subword segments have the advantage of requiring less mem-
ory for the model, especially at n-gram orders of 3 and 4, while still maintaining a low
error rate. Syllable subwords also have the lowest error rate for out of vocabulary words,
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showing that they are effective at correctly identifying about half of these words. Overall,
syllable segmentation provides benefits in terms of reduced model memory requirements
and a lower error rate, despite having higher language modelling complexity compared to
word-based language models.
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Chapter 7

Conclusion
In this thesis we have demonstrated that the morphological complexity of Malayalam is
much higher than that of many other Indian and European languages which are known
for their complex morphological structure. Considering this morphological complexity,
a general purpose ASR would require a large PL. We designed and developed an FST
based bidirectional grapheme to phoneme conversion tool Mlphon, which can addition-
ally perform syllabification as well. The speed and accuracy of Mlphon is evaluated and
compared with other openly available lexicon creation tools.

Then we have presented the building process of LVCSR system for Malayalam. The re-
sultant model is evaluated in terms of WER. The data used for building the model, model
creation scripts, lexicons and the resultant model are made publicly available under open
license for reproduction and reuse purposes.

We have also presented an alternate approach to address the morphological complexity
of Malayalam in ASR task by building open vocabulary ASR. Existing subword segmen-
tation strategies are compared with two proposed algorithms for subword modelling in
Malayalam and the resulting WER are evaluated.

7.1 Major Contributions

1. Analysis of the morphological complexity of Malayalam language.

2. Documentation of the graphemic and phonemic inventory of Malayalam and the
correspondence between the two.

3. Development of an algorithmic description of the grapheme-phoneme correspon-
dence in Malayalam and implement it into a modular toolkit.

4. Publication of large vocabulary pronunciation lexicon of more than hundred thou-
sand words belonging to different word categories.

5. Development of a LVCSRmodel forMalayalam and publication of an open licensed
Malayalam ASR model that could be integrated to various applications.

6. Exploration of subword segmentation strategies suited for Malayalam considering
its morphological complexity.
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7. Development of subword based open vocabulary ASR model to reduce WER and
model memory requirement.

Furthermore, open dissemination of the source codes and the models is essential to ensure
reproducibility, reusability and research continuity. This aspect of has been given utmost
priority at every stage of this research work.

7.2 Limitations

Many large speech corpora in Malayalam published at the time of the writing of this thesis
are documented in the literature review. However they were not utilised in the experiments
of the research work, which were completed before the publication of those resources.

The experiments in the current research uses the best approach in hybrid DNN-HMM
acoustic modelling, using TDNN with long temporal context and MMI based sequence
discriminative training [23–26]. Over the past few years, the field of ASR has under-
gone significant changes, particularly with the introduction of pretrained speech trans-
formers trained on speech-only data [37] or combined with annotated speech data [38]
from multiple languages, which can be fine-tuned for ASR tasks using small annotated
speech datasets. While the use of such models has not been extensively explored in the
low-resource ASR task of this thesis, they might have the potential to significantly im-
prove the performance of ASR systems.

7.3 Future Scope

The Mlphon G2P tool developed in this study doesn’t currently offer transcriptions at the
allophone level that indicate co-articulation effects. However, there’s potential to expand
the tool to include these effects in the future.

As a future avenue of research, it would be valuable to explore methodologies that effec-
tively isolate the impact of varying phonetic lexicons in acoustic models from the presence
of language models. This could facilitate a more refined assessment of phoneme recogni-
tion efficiency within diverse acoustic models when using distinct pronunciation lexicons.
Furthermore, investigating techniques to disentangle these influences could yield insights
into the interplay of pronunciation and language modeling in speech recognition systems.

To enhance the open framework for building ASR introduced in this thesis, it would be
beneficial to increase the speech dataset used for acoustic modeling. With the availability
of new speech datasets for Malayalam, an improved model could be integrated into desk-
top or mobile applications for speech-based typing and interacting with conversational
agents.
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The subword modeling techniques proposed in this research for language modeling could
also find application in E2E ASR systems for acoustic modeling. However, further inves-
tigation is needed to explore this possibility.
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Appendix I

Characteristics of Malayalam
Orthography

Malayalam is a language spoken predominantly in the state of Kerala in southern India,
with about 38million native speakers. It belongs to the Dravidian language family, and has
an alphasyllabary writing system [112]. Though Malayalam script is largely phonemic in
nature, there are some unique characteristics like: (i) consonants with and without inherent
vowel, (ii) consonant clusters with pronunciation different from the consonants present in
them, (iii) special symbol virama, that contextually chooses its function depending on its
position in a word and (iv) graphemes being overloaded with non-native sounds in loan
words.

I.1 Grapheme Inventory of Malayalam

Malayalam belongs to the family of Brahmic writing systems that is alphasyllabary in
nature [112]. In this writing system, consonant - vowel sequences are written as a unit;
each unit is based on a consonant character, and the vowel notation is secondary. The
basic components inMalayalam orthography belong to three classes of characters: namely
vowels, consonants and signs. Additionally there are complex graphemes derived from
these basic characters.

I.1.1 Vowels

There are 16 vowels in Malayalam. It includes 5 short vowels, 5 long vowels, 2 diph-
thongs and 4 vocalics [118]. Independent vowels occur only at word beginnings. Vowels
that follow consonants in word medial or end positions are indicated by dependent vowel
signs. Consonants generally have the vowel /a/ inherent in them, eliminating the need for
specialized vowel sign for അ /a/. See Table I.1 for the list of all vowels in Malayalam
and their IPA representations.

I.1.2 Consonants

There are 38 regular consonant graphemes in Malayalam [118]. This includes 21 plo-
sives classified by their aspirational and voicing characteristics, 6 nasals, 4 fricatives, 3
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approximants, 2 laterals and 1 each tap and trill. The place of articulation are indicated
in the rows and manner of articulation in the columns of the Table I.2. Apart from the
regular consonants, there are dead consonants (referred as chillus) in Malayalam, which
do not have the inherent vowel associated with them. The chillus of Malayalam are listed
in Table I.3.

Table I.3: Chillus in Malayalam and their IPA representations along with the base conso-
nants from which chillus were derived.

Chillus Base consonants
ൿ k ക ka
ൺ ɳ ണ ɳa
ൻ n ന na
ൽ l ല la
ൔ m മ ma
ൕ j യ ja
ൾ ɭ ള ɭa
ൖ ɻ ർ r

I.1.3 Signs

The special signs virama (◌്), dot reph (◌ൎ ), anuswara (◌ം) and visarga (◌ഃ) have their prop-
erties as tabulated in Table I.4. Virama removes the inherent vowel from the consonant
preceding it. The virama that occurs at word ends, apart from removing the inherent vowel,
adds the mid-central vowel schwa /ə/ to nativeMalayalamwords. Dot reph is an alternate
sign representation for the consonant clusters that begin with /r/ or /ɾ/. Anuswara is a
sign common in Malayalam. Its phonemic representation is /m/ and always mark sylla-
ble endings. Visarga sign is popular in Sanskrit derived words and they introduce slight
pronunciation changes similar to aspirated glottal stop.

Table I.4: Signs in Malayalam

Sign Properties
Anuswara (◌ം) Represents /m/ at syllable ends.
Dot reph (◌ൎ ) Represents /r/ or /ɾ/.
Visarga (◌ഃ) Introduces aspirated glottal stop.
Virama (◌്) Kills Inherent vowel.

Inserts schwa at word ends.

I.1.4 Complex Graphemes in Malayalam

Apart from the basic characters, Malayalam script has hundreds of complex graphemes
representing consonant clusters. A consonant cluster is a sequence of consonants with
no intervening vowels. The removal of inherent vowel from the conjoining consonants
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happens on the addition of a virama sign. A consonant cluster, often forms a complex
grapheme with one or more of stacking, changing and merging the shapes of the con-
stituent characters. Hundreds of possible complex graphemes in Malayalam are not indi-
vidually encoded in Unicode, instead they are constituted from basic characters. Table I.5
lists certain examples of consonant clusters in Malayalam and their constituents.

Table I.5: Examples of consonant clusters in Malayalam and their constituents

Consonant cluster Constituent character sequence
ക്ക kka ക ka ◌് ക ka
ങ്ക ŋka ങ ŋa ◌് ക ka
� kɭa ക ka ◌് ല la

ഘ്ന ɡʱna ഘ ɡʱa ◌് ന n̪a
Ǳ sta̪ സ sa ◌് ത ta̪
¶ gɾa ഗ ga ◌് ര ɾa
ഗ്യ gja ഗ ga ◌് യ ja

ő n̪tr̪a ന n̪a ◌് ത ta̪ ◌് ര ɾa

I.2 Phoneme Inventory of Malayalam

The regular vowel phonemes in Malayalam are listed in Table I.6, classified with their
vowel height, length and backness. The graphemic origin of these vowel phonemes can be
from independent vowels or dependent vowel signs. The mid-central vowel, schwa (/ə/)
does not have a specific vowel grapheme. Its occurrence is limited to words that end in
virama. Discussion on schwa addition at word ends is in Section I.3.4. Additionally there
are two diphthongs (/ai/, /au/) and four vocalics (/rɨ/, /rɨː/, /lɨ/, /lɨː/) in Malayalam
which belongs to the category of vowels. Vocalics are letters derived from Sanskrit that
generally behave like vowels1 [118].

Table I.6: Vowel phonemes of Malayalam

Backness
Front Central Back

Short Long Short Short Long

H
ei
gh
t Close i iː u uː
Close-mid e eː o oː
Mid ə
Open a aː

There are 39 consonant phonemes in Malayalam. Their classification based on the man-
ner and place of articulation is listed in Table I.7. The plosive phonemes in Malayalam

1Script notes on Malayalam by Richard Ishida: https://r12a.github.io/scripts/
malayalam/
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have the features of aspiration and voicing. Native Malayalam words do not have the
phoneme labiodental fricative, /fa/. But a lot of foreign language words are written by
overloading the labial aspirated plosive grapheme ഫ /pʰa/ with the /fa/ sound. This
makes the consonant phoneme inventory larger than the consonant grapheme inventory
by one. Disambiguating the pronunciations of ഫ, primarily involves identifying if it is a
foreign language word from the grapheme context. The correspondence of the phonemes
with the graphemes in Malayalam script and the rules of exceptions are discussed in Sec-
tion I.3

Table I.7: Consonant Phonemes of Malayalam

Manner of Articulation
Pl
os
iv
e1

Pl
os
iv
e2

Pl
os
iv
e3

Pl
os
iv
e4

N
as
al

Tr
ill

Ta
p

Fr
ic
at
iv
e

A
pp
ro
xi
m
an
t

La
te
ra
l

Pl
ac
e
of
A
rt
ic
ul
at
io
n Velar k kʰ ɡ ɡʰ ŋ

Palatal c cʰ ɟ ɟʰ ɲ ɕ j
Retroflex ʈ ʈʰ ɖ ɖʰ ɳ ʂ ɻ ɭ
Alveolar ṯ n r ɾ s l
Dental t ̪ t ̪h d̪ d̪ʰ n̪
Labial p pʰ b bʰ m
Labiodental f ʋ
Glottal h

1Unaspirated and Unvoiced
2Aspirated and Unvoiced
3Unaspirated and Voiced
4Aspirated and Voiced

I.3 Grapheme to Phoneme Correspondence

This section discusses the general rules of grapheme-phoneme conversions in Malayalam
and the exceptional cases which are to be handled in an automatic tool for doing the same
using FSTs. The correspondence between graphemes and phonemes in Malayalam is not
strictly one-to-one. The conversions from graphemes to phonemes and vice versa is im-
portant in the context of ASR, TTS synthesis, phonemic transliterations etc. Mlphon, in
its current form, is designed as a tool for phoneme level analysis and thus the allophonic
variations (eg: voicing of word medial plosives) due to co-articulation effects are not
considered in this work. A potential extension for Mlphon could involve incorporating
allophone-level representations which would be a prospective direction for further devel-
opment.
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I.3.1 Vowels

Independent vowel graphemes and dependent vowel signs are always mapped to the cor-
responding IPAs listed as in Table I.1. The mid-central vowel schwa which does not have
an explicit vowel grapheme is mapped to virama at word ends.

I.3.2 Base Consonants

Primarily all the consonant graphemes can be mapped to the corresponding IPAs as listed
in Table I.2. The syllabic nature of alphabet makes all consonant graphemes to have the
inherent vowel, /a/, associated with them, unless followed by a dependent vowel sign or
a virama. Phonemes corresponding to the vowel signs replace the inherent vowel when
vowel signs follow a consonant. Virama acts as inherent vowel killer, except when it
occurs at word end positions.

Malayalam has graphemes for alveolar plosive, ഺ /ṯa/, and alveolar nasal, ഩ /na/, but
are not in popular use. The dental nasal grapheme ന /n̪a/ of Malayalam is overloaded
to represent the alveolar nasal sound. So the tool for grapheme to phoneme conversion
must disambiguate whether the grapheme ന, represents the dental sound or the alveolar
sound. This can be done by using contextual rules for native words. But the rules can not
be generalized to foreign language words, complex morpheme boundaries etc. Alveolar
plosive sound occur only in the context of two consonant clusters in Malayalam and it is
discussed in Section I.3.3.

I.3.3 Consonant Clusters

Regular consonant clusters have base consonants separated by virama in between. The
inherent vowel sound of the consonant preceding virama has to be removed for pronunci-
ationmodeling as a sequence of phonemes. For example the sequenceങ /ŋa/, ◌് (virama),
ക /ka/, gives the consonant cluster ങ്ക /ŋka/, where virama removes the inherent vowel
/a/ after /ŋ/. The consonant clusters whose pronunciation differ from the constituent
consonants are discussed in Sections I.3.3 and I.3.3.

Exceptional Clusters of Alveolar Nasal and Alveolar Plosive (റ്റ,ന്റ)

Alveolar plosive always occur in the language either as a geminate or in the consonant clus-
ter ന്റ /nṯa/. The geminate consonant /ṯṯa/ is formed not from the consonant grapheme
ഺ /ṯa/, but from alveolar trill grapheme റ /ra/. ie., the sequence റ /ra/, virama ( ◌്), റ
/ra/ constitutes the cluster റ്റ /ṯṯa/.

A very popular consonant cluster involving alveolar phonemes in Malayalam is ന്റ /n�a/.
This consonant cluster is derived not from the sequence ഩ /na/, virama (◌്), ഺ /ṯa/, but
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fromന /n̪a/, virama (◌്),റ /ra/. It is to be noted that, there is an alternative representation
forന്റwhich involves chilluൻ /n/ instead ofന /n̪a/, which is also supported byMlphon.

Multiple Pronunciations of Reph Sign ( ്ര◌ )

When the final consonant in a consonant cluster is the alveolar tap ര /ɾa/, it forms a con-
sonant diacritic, called reph sign, usually pre based to the left of the rest of the consonant
cluster or forms a new shape. The sequence ഗ /ga/, ◌് (virama), ര /ɾa/ forms the new
shape ¶ /gɾa/. The pronunciation of the alveolar tap ര /ɾa/, changes to alveolar trill റ
/ra/, depending on the immediately preceding consonant. It is pronounced as /r/ in �മം
/kramam/ (order) andǲീ /str̪iː/(woman) but as /ɾ/ in¶ാമം /gɾaːmam/ (village). This
pronunciation variation is supported by Mlphon.

I.3.4 Multiple Functions of virama

Virama acts as inherent vowel killer when used in between consonants in consonant clus-
ters. It can occur at syllable final position, only at the word ends. In that position, apart
from removing the inherent vowel /a/, virama adds the mid-central vowel schwa /ə/ at
word ends as inപാല് /paːlə/. It is called samvruthokaram. An alternate graphemic repre-
sentation for samvruthokaram is ◌ു /u/ dependent vowel sign followed by virama at word
ends. For example അവന് and അവനു് are two alternate ways to write /aʋanə/ (to him).
Both of these representations are supported by Mlphon. It is to be noted that the schwa
at the word end distinguishes it from the word അവൻ /aʋan/ (he). Usage of virama at
other contexts is considered to be linguistically invalid.

I.3.5 Syllable Final Consonants (Chillu, Anusvara, Visarga)

Chillus are special consonant graphemes that do not have inherent vowel associated with
it. If a word final consonant sound has to be terminatedwithout a samvruthokaram, a chillu
is used as in പാൽ /pal/ (milk). Not all consonants in Malayalam has a chillu form. Even
though there are 39 consonant phonemes in Malayalam, there are only 9 chillu graphemes
as listed in the Table I.3. Chillus also appear in consonant clusters in wordmedial positions
as ർ occurs in വർഗ്ഗം /ʋarɡɡam/ (class).

Anusvara is a sign mark, that has the pronunciation of the consonant /m/, without an
inherent vowel. മരം /maɾam/ (tree) is a word that ends in anusvara. Visarga is used
in Sanskrit derived words. It indicates glottal aspiration as in ദുഃഖം /d̪uɦkʰam/ (grief ).
These three characters (Chillu, Anusvara, Visarga) indicate the end of an orthographic
syllable. The orthographic syllable structure of Malayalam is presented in the following
section.
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I.4 The Syllable Structure of Malayalam

A syllable in speech is typically composed of a mandatory vowel nucleus, along with
optional consonants or consonant clusters in onset and coda positions as shown in Fig.
I.1. The sequence of characters and signs that constitute a valid syllable in Malayalam
can be summarized as [117,119]:

Figure I.1: Structure of a syllable. C-consonant, V-vowel, ?- indicates optionality

1. Every independent vowel occurring at word beginning is a syllable.

eg: അ /a/ (V) in അമ്മ /a.mma/ (mother)

2. Every consonant or consonant cluster with or without vowel sign at end is a syllable.

eg: ക /ka/ (CV) in കളി /ka.ɭi/ (game),

കി /ki/ (CV) in കിളി /ki.ɭi/ (bird),

Ǳ /sta̪/ (CCV) in പുǱകം /pu.sta̪.kam/ (book),

Ǥി /ʂʈi/ (CCV) in ഇǤിക /i.ʂʈi.ka/ (brick)

3. If there is a chillu, anusvara or visarga at the end of case 1 or 2 described above, it
becomes the coda and joins to the previous syllable.

eg: വൻ /ʋan/ (CVC) in അവൻ /a.ʋan/ (he),

അം /am/ (VC) in അംബുജം /am.bu.ɟam/ (lotus),

ǲം /str̪am/ (CCCVC) in അǲം /a.str̪am/ (arrow)

4. A consonant or consonant cluster followed by a virama preceded by optional u-
vowel (◌ു) sign, if and only if at word ends, is a syllable. In this scenario, the vowel
sound is schwa /ə/, which does not have an explicit vowel grapheme inMalayalam.

eg: ന് /nə/ (CV) in അവന് /a ʋa nə/ (him),
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ട്ട് /ʈʈə/ (CCV) in പട്ട് /pa ʈʈə/ (silk),

ñ് /ʈʈə/ (CCV) in പñ് /pa ʈʈə/ (silk),

A sequence of characters that do not belong to any of the classes listed above, will not form
a valid syllable and can not be accepted for pronunciation analysis. A vowel sign following
an independent vowel (അി), a word beginning with a virama (◌്ക്കം), an independent
vowel after a consonant (കിഅ) etc. are examples of invalid sequences.
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